AI Article Synopsis

Article Abstract

Our previous study with docosahexaenoic acid (DHA) supplementation to hypertriglyceridemic men showed that DHA reduced several risk factors for cardiovascular disease, including the plasma concentration of inflammatory markers. To determine the effect of DHA supplementation on the global gene expression pattern, we performed Affymetrix GeneChip microarray analysis of blood cells [treated with lipopolysaccharide (LPS) or vehicle] drawn before and after the supplementation of DHA from the hypertriglyceridemic men who participated in that study. Genes that were significantly differentially regulated by the LPS treatment and DHA supplementation were identified. Differential regulation of 18 genes was then verified by quantitative real-time polymerase chain reaction (qRT-PCR). Both microarray and qRT-PCR data showed that DHA supplementation significantly suppressed the expression of low-density lipoprotein (LDL) receptor and cathepsin L1, both of which were also up-regulated by LPS. DHA supplementation also suppressed oxidized LDL (lectin-like) receptor 1 (OLR1). However, LPS did not induce OLR1 mRNA expression. Enrichment with Gene Ontology categories demonstrated that the genes related to transcription factor activity, immunity, host defense and inflammatory responses were inversely regulated by LPS and DHA. These results provide supporting evidence for the anti-inflammatory effects of DHA supplementation, and reveal previously unrecognized genes that are regulated by DHA and are associated with risk factors of cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2011.03.004DOI Listing

Publication Analysis

Top Keywords

dha supplementation
28
hypertriglyceridemic men
12
dha
11
gene expression
8
supplementation
8
supplementation hypertriglyceridemic
8
risk factors
8
factors cardiovascular
8
regulated lps
8
supplementation suppressed
8

Similar Publications

Fucoxanthin promotes the conversion efficiency of alpha-linolenic acid in feeding to docosahexaenoic acid in quail egg yolk.

Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, PR China. Electronic address:

The conversion of alpha-linolenic acid (ALA) in feed to DHA in egg is inefficient, so there is a critical need for feed additives that can enhance the enrichment of docosahexaenoic acid (DHA) in egg yolk from ALA-rich feed. The present study evaluated the impact of dietary fucoxanthin on the conversion efficiency of ALA in feed to DHA in quail egg yolk. Results showed that the addition of 0.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

The Optimal Dosage and Duration of Omega-3 Polyunsaturated Fatty Acid Supplementation in Heart Failure Management: Evidence from a Network Meta-Analysis.

Adv Nutr

January 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan. Electronic address:

Heart failure is a progressive condition associated with a high mortality rate. Despite advancements in treatment, many patients continue to experience less-than-ideal outcomes. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been studied as a potential supplementary therapy for heart failure, but the optimal dosage and duration of supplementation remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!