Background: Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug's impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations.
Methods: Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13-23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed.
Results: FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show age-appropriate levels of ACC CHO.
Conclusions: The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214603 | PMC |
http://dx.doi.org/10.1016/j.drugalcdep.2011.06.017 | DOI Listing |
Toxicology
January 2025
School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:
Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.
View Article and Find Full Text PDFFront Psychiatry
December 2024
Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
Introduction: Glutathione S-transferase (GST) has the ability to detoxify the cellular environment of xenobiotic compounds and by-products of oxidative stress. The expression levels of GST genes and their polymorphisms are associated with various human diseases. Methamphetamine and opiate addiction also account for a significant proportion of SUDs in Iran.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Science and Human Phenome Institute, Research Institute of Intelligent Complex Systems and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China.
Unlabelled: Methamphetamine (MA) abuse is increasing worldwide, and evidence indicates that MA causes degraded cognitive functions such as executive function, attention, and flexibility. Recent studies have shown that regular physical exercise can ameliorate the disturbed functions. However, the potential functional network alterations resulting from physical exercise have not been extensively studied in female MA users.
View Article and Find Full Text PDFHarm Reduct J
November 2024
Division of Public Health Sciences, Department of Implementation Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
PLoS One
November 2024
School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.
Background: Substance use induces large economic and societal costs in the U.S. Understanding the change in substance use behaviors of persons who use drugs (PWUDs) over time, therefore, is important in order to inform healthcare providers, policymakers, and other stakeholders toward more efficient allocation of limited resources to at-risk PWUDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!