Automatic learning algorithm for the MD-logic artificial pancreas system.

Diabetes Technol Ther

The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, The National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.

Published: October 2011

Background: Applying real-time learning into an artificial pancreas system could effectively track the unpredictable behavior of glucose-insulin dynamics and adjust insulin treatment accordingly. We describe a novel learning algorithm and its performance when integrated into the MD-Logic Artificial Pancreas (MDLAP) system developed by the Diabetes Technology Center, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.

Methods: The algorithm was designed to establish an initial patient profile using open-loop data (Initial Learning Algorithm component) and then make periodic adjustments during closed-loop operation (Runtime Learning Algorithm component). The MDLAP system, integrated with the learning algorithm, was tested in seven different experiments using the University of Virginia/Padova simulator, comprising adults, adolescents, and children. The experiments included simulations using the open-loop and closed-loop control strategy under nominal and varying insulin sensitivity conditions. The learning algorithm was automatically activated at the end of the open-loop segment and after every day of the closed-loop operation. Metabolic control parameters achieved at selected time points were compared.

Results: The percentage of time glucose levels were maintained within 70-180 mg/dL for children and adolescents significantly improved when open-loop was compared with day 6 of closed-loop control (P<0.0001) and remained unaltered for the adult group (P=0.11) during nominal conditions. In varying insulin sensitivity conditions, the percentage of time glucose levels were below 70 mg/dL was significantly reduced by approximately sevenfold (P<0.001). These observations were correlated with significant reduction in the Low Blood Glucose Index (P<0.001).

Conclusions: The new algorithm was effective in characterizing the patient profiles from open-loop data and in adjusting treatment to provide better glycemic control during closed-loop control in both conditions. These findings warrant corroboratory clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dia.2010.0216DOI Listing

Publication Analysis

Top Keywords

learning algorithm
24
artificial pancreas
12
md-logic artificial
8
pancreas system
8
mdlap system
8
algorithm component
8
closed-loop operation
8
closed-loop control
8
day closed-loop
8
algorithm
7

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Relecura, Bangalore, karnataka, India.

Background: Clinical Dementia Rating (CDR) and its evaluation have been important nowadays as its prevalence in older ages after 60 years. Early identification of dementia can help the world to take preventive measures as most of them are treatable. The cellular Automata (CA) framework is a powerful tool in analyzing brain dynamics and modeling the prognosis of Alzheimer's disease.

View Article and Find Full Text PDF

Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) presents challenges with its complex neurodegenerative mechanisms, leading to a high failure rate in clinical trials. While drug repositioning offers a cost-effective solution, the lack of a subtype-driven strategy hinders success. Previously, we defined genetic subtypes and their prioritized genes for each genetic subtype (Sahelijo et al.

View Article and Find Full Text PDF

Background: Sundowning is the development or progression of neuropsychiatric symptoms (NPS) often occurring in the afternoon or early evening. Noninvasive ambient sensors (NAS) monitor individuals without the need to wear a device or use a camera. The data from NAS sensors can identify movement patterns in the context of cyclomatic complexity to indicate when an individual may be sundowning.

View Article and Find Full Text PDF

Background: Currently, the diagnosis of Alzheimer's disease dementia (ADD) is determined based on clinical criteria, as well as specific imaging and cerebrospinal fluid (CSF) biomarker profiles. However, healthcare professionals face a variety of challenges that hinder their application, such as the interpretation and integration or large amounts of data derived from neuropsychological assessment, the importance attributed to each source of information and the impact of unknown variables, among others. Therefore, this research focuses on the development of a computerized diagnostic tool based on Artificial Intelligence (AI), to strengthen the capacity of healthcare professionals in the identification and diagnosis of ADD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!