Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in qualitatively determining the composition and origin of heterogeneous urban-air particles from high-resolution elemental maps. Coarse-mode particles were taken from samples collected in three U.S. cities: Atlanta, Los Angeles, and Seattle. Elemental maps distinguished particles with heterogeneously mixed phases from those with homogeneously mixed phases that also contained inclusions or surface adducts. Elemental mapping at low and high beam energies, along with imaging at an oblique angle helped to classify particles by origin. The impact of particle shape on X-ray microanalysis was demonstrated by having the beam enter the particle at ≥ 52° from normal. Potential misinterpretations of particle composition due to artifacts in the elemental maps were minimized by tilt imaging to reveal particle surface roughness and depth, mapping at low beam energies, noting the position of the EDX detector in the map field, and assessing differences in the mass absorption coefficients of the particle's major elements to anticipate X-ray self-absorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es2009049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!