Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medium composition and culture conditions for maximal collagenase production by Penicillium aurantiogriseum URM4622 were optimized using a response surface approach. A full two-level design on three factors (initial medium pH, soybean flour concentration, and temperature) was employed to identify the most significant fermentation parameters for collagenase production, and a subsequent central composite design (CCD) was used to find the optimal levels of the two most significant factors (initial medium pH and soybean flour concentration). The design results indicated that the initial medium pH and the temperature had significant negative main effects, whereas the substrate concentration had a positive effect on the collagenase production. The maximum collagenolytic activity predicted by the fitted response surface was expected to occur at pH 7.21, 1.645% soybean flour concentration and 24°C. Three replicate experiments were run at these conditions and yielded an activity response of 283.36 ± 1.33 U, which not only is the highest obtained in this study but also represents a 5-fold increase over the lowest response observed in the initial design. Since all experiments were carried out with an inexpensive substrate, the final results point out to a cost-effective medium for collagenase production with potential industrial-scale applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.664 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!