C-peptide reduces high-glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation in human aortic endothelial cells.

Diabetologia

Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh, 530 45th Street, Pittsburgh, PA 15201, USA.

Published: October 2011

Aims/hypothesis: Reactive oxygen species (ROS) generated during hyperglycaemia are implicated in the development of diabetic vascular complications. High glucose increases oxidative stress in endothelial cells and induces apoptosis. A major source of ROS in endothelial cells exposed to glucose is the NAD(P)H oxidase enzyme. Several studies demonstrated that C-peptide, the product of proinsulin cleavage within the pancreatic beta cells, displays anti-inflammatory effects in certain models of vascular dysfunction. However, the molecular mechanism underlying this effect is unclear. We hypothesised that C-peptide reduces glucose-induced ROS generation by decreasing NAD(P)H oxidase activation and prevents apoptosis

Methods: Human aortic endothelial cells (HAEC) were exposed to 25 mmol/l glucose in the presence or absence of C-peptide and tested for protein quantity and activity of caspase-3 and other apoptosis markers by ELISA, TUNEL and immunoblotting. Intracellular ROS were measured by flow cytometry using the ROS sensitive dye chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H(2)-DCDFA). NAD(P)H oxidase activation was assayed by lucigenin. Membrane and cytoplasmic levels of the NAD(P)H subunit ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) (RAC-1) and its GTPase activity were studied by immunoblotting and ELISA. RAC-1 (also known as RAC1) gene expression was investigated by quantitative real-time PCR.

Results: C-peptide significantly decreased caspase-3 levels and activity and upregulated production of the anti-apoptotic factor B cell CLL/lymphoma 2 (BCL-2). Glucose-induced ROS production was quenched by C-peptide and this was associated with a decreased NAD(P)H oxidase activity and reduced RAC-1 membrane production and GTPase activity.

Conclusions/interpretation: In glucose-exposed endothelial cells, C-peptide acts as an endogenous antioxidant molecule by reducing RAC-1 translocation to membrane and NAD(P)H oxidase activation. By preventing oxidative stress, C-peptide protects endothelial cells from glucose-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-011-2251-0DOI Listing

Publication Analysis

Top Keywords

endothelial cells
28
nadph oxidase
20
oxidase activation
12
c-peptide
8
c-peptide reduces
8
cells
8
reactive oxygen
8
oxygen species
8
human aortic
8
aortic endothelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!