AI Article Synopsis

  • The study focused on chiral 3D Metal-Organic Frameworks (MOFs) formed by the arrangement of chiral 1D Secondary Building Blocks (SBBs).
  • The research revealed that the packing of these MOFs is highly influenced by the dimensions of the SBBs used.
  • A novel plywood-like network was discovered, featuring a unique six-way chiral helical structure, adding to the known configurations of rod packings.

Article Abstract

The chiral 3D MOFs resulted from the packing of chiral 1D SBBs were studied. It was demonstrated that the final packing pattern is sensitively dependent on the dimension of SBBs. In addition, we were able to identify a new plywood-like network from ligand 2H(2) exhibiting an unprecedented six-way chiral helical packing motif, which extends the list of invariant rod packings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cc12908bDOI Listing

Publication Analysis

Top Keywords

helical packing
8
packing chiral
8
homochiral metal-organic
4
metal-organic frameworks
4
chiral
4
frameworks chiral
4
chiral rods
4
rods 6-way
4
6-way helical
4
packing
4

Similar Publications

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion.

Cell

December 2024

Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:

Article Synopsis
  • Viral factories (VFs) are membrane-less organelles where negative-sense RNA viruses, like Ebola, replicate and encapsidate their genomes.
  • Using advanced imaging techniques, researchers observed how viral nucleocapsids (NCs) change from loose formations to compact structures during the infection process.
  • The study found that as VFs mature, they become less spherical and more integrated with cellular components, which likely aids in the transportation of NCs for virus budding.
View Article and Find Full Text PDF

Physicochemical features of subunit interfaces and their role in self-assembly across the ferritin superfamily.

Structure

December 2024

Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India. Electronic address:

Ferritins are ubiquitous and play a critical role in iron homeostasis. They are classified into four main subfamilies: classical, bacterial, bacterioferritin, and Dps. These are characterized by subunits with a four-helical bundle domain and interact through three distinct regions-one antiparallel interface (IntA) and two perpendicular interfaces (IntB and IntC), collectively forming a cage-like structure.

View Article and Find Full Text PDF

Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

The title mol-ecule, CHBrNO, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C-H⋯O hydrogen bonds and C-H⋯π(ring) inter-actions form helical chains of mol-ecules extending along the -axis direction that are linked by additional weak C-H⋯π(ring) inter-actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!