Lateral mobility and dimensionality have both been shown to influence cellular behavior, but have yet to be combined and applied in a single in vitro platform to address, e.g., cell adhesion in a setting mimicking the three-dimensional environment of neighboring cells in a reductionist way. To study the effect of the lateral mobility of cell adhesive ligands in three dimensions we present and characterize a platform, which enables patterning of single cells into microwells presenting a cell membrane mimetic interface pre-patterned to its walls. Soluble E-cadherin extracellular domains coupled through an optimized streptavidin-antibody linkage to lipids in a supported lipid bilayer (SPB) were presented on the microwell walls as either laterally mobile or immobile ligands. The fluidity was controlled through a small change in temperature by choosing phospholipids for the SPB with a lipid phase transition temperature around 30 °C. The platform thus enabled the investigation of cell adhesion to either laterally immobile or mobile E-cadherin ligands presented on the same cell membrane mimetic surface. Chinese hamster ovary (CHO) cells engineered to express E-cadherin that were cultured on the platform demonstrated that enhanced cadherin lateral mobility significantly decreased the formation of actin bundles and resulted in more diffuse actin organization, while constraining the cell shape to that of the microwell. This example highlights the potential to use in vitro cell culture platforms to mimic direct cell-cell interaction in a controlled environment that nevertheless captures the dynamic nature of the native cell environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1lc20067d | DOI Listing |
Hip Int
January 2025
Department of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada.
Background: Different methods can help to optimise sagittal cup orientation in total hip arthroplasty (THA) based on individual spinopelvic characteristics. This study aimed to: (1) assess how often combined sagittal index (CSI) and hip-spine-classification targets were achieved post THA; (2) compare anteversion/inclination between cups in-/outside optimal CSI zone; and (3) determine association with outcome.
Methods: This is a multicentre, prospective, case-cohort study of 435 primary THA for osteoarthritis (53% females; age: 65 ± 12 years; follow-up: 2.
Oper Orthop Traumatol
January 2025
Klinik für Orthopädie und Unfallchirurgie, Martin-Luther-Krankenhaus Berlin, Caspar-Theyss-Str. 27-33, 14193, Berlin, Deutschland.
Objective: Lengthening of the patellar tendon to normalize patellar height and improve knee flexion deficits.
Indications: Flexion deficits in combination with patella baja (Caton index < 0.6).
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Department of Orthopedics, Anhui Provincial Children's Hospital, Anhui Medical University Children's Medical Center, Hefei Anhui, 230051, P. R. China.
Objective: To compare the effectiveness of ultrasound-guided closed reduction with Kirschner wire fixation and open reduction with Kirschner wire fixation in the treatment of humeral lateral condyle fracture (HLCF) in children.
Methods: A clinical data of 53 children with HLCF admitted between May 2020 and April 2023 and met selective criteria was retrospectively analyzed. Of these, 25 cases were managed with closed reduction and Kirschner wire fixation under ultrasound guidance (closed group), while 28 cases underwent open reduction and Kirschner wire fixation (open group).
PLoS One
January 2025
Faculty of Science, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
Not all corals are attached to the substrate; some taxa are solitary and free-living, allowing them to migrate into preferred habitats. However, the lifestyle of these mobile corals, including how they move and navigate for migration, remains largely obscure. This study investigates the specific biomechanics of Cycloseris cyclolites, a free-living coral species, during phototactic behaviour in response to blue and white light stimuli.
View Article and Find Full Text PDFJBJS Essent Surg Tech
January 2025
Department of Neurosurgery, Center for Neuroscience and Spine, Virginia Mason Medical Center, Seattle, Washington.
Background: Prone transpsoas lumbar interbody fusion (PTP) is a newer technique to treat various spinal disc pathologies. PTP is a variation of lateral lumbar interbody fusion (LLIF) that is performed with the patient prone rather than in the lateral decubitus position. This approach offers similar benefits of lateral spinal surgery, which include less blood loss, shorter hospital stay, and quicker recovery compared with traditional open spine surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!