The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by β(1)-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial cells from C57 BL/6 mice were incubated with β(1)-integrin function-blocking antibody (Ha2/5) or isotype control and the impacts on claudin-5 expression and microvessel permeability were quantified. Both flow cytometry and immunofluorescence studies demonstrated that the interendothelial claudin-5 expression by confluent endothelial cells was significantly decreased in a time-dependent manner by Ha2/5 exposure relative to isotype. Furthermore, to assess the barrier properties, transendothelial electrical resistance and permeability measurements of the monolayer, and stereotaxic injection into the striatum of mice were performed. Ha2/5 incubation reduced the resistance of endothelial cell monolayers significantly, and significantly increased permeability to 40 and 150 kDa dextrans. Ha2/5 injection into mouse striatum produced significantly greater IgG extravasation than the isotype or the control injections. This study demonstrates that blockade of β(1)-integrin function changes interendothelial claudin-5 expression and increases microvessel permeability. Hence, endothelial cell-matrix interactions via β(1)-integrin directly affect interendothelial cell tight junction claudin-5 expression and brain microvascular permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208159 | PMC |
http://dx.doi.org/10.1038/jcbfm.2011.99 | DOI Listing |
Biol Direct
December 2024
Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
Background: Alveolar macrophages (AMs) is critical to exacerbate acute lung injury (ALI) induced by lipopolysaccharide (LPS) via inhibiting inflammation, which could by shifted by mesenchymal stem cell-derived exosomes (MSC-exos). But the underlying rationale is not fully clarified. Our study aimed to analyze the significance of itaconic acid (ITA) in mediating the protective effects of MSC-exos on LPS-induced ALI.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP.
View Article and Find Full Text PDFFluids Barriers CNS
December 2024
Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
Background: Protein expression analysis of isolated brain microvessels provides valuable insights into the function of the blood-brain barrier (BBB). However, isolation of brain microvessels from human brain tissue, particularly in small quantities, poses significant challenges. This study presents a method for isolating brain microvessels from a small amount of frozen human brain tissue, adapting techniques from an established mouse brain capillary isolation method.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Neurobiology, Harbin Medical University, Harbin, China. Electronic address:
Background: Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) have shown therapeutic potential in experimental autoimmune encephalomyelitis (EAE). As a non-invasive method of drug administration, intranasal delivery is anticipated to emerge as a novel option for the treatment of central nervous system (CNS) disorders. Therefore, this study aims to treat EAE by nasal exosomes and explore its specific mechanism, especially its impact on the blood-brain barrier (BBB).
View Article and Find Full Text PDFArthritis Res Ther
December 2024
Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA.
Background: Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!