Our investigation addresses the hypothesis that disruption of third trimester development by preterm birth alters multiple biological pathways affecting metabolic health in adult life. We compared healthy adult volunteers aged 18-27 y born at ≤ 33 wk gestation or at term. We used whole-body MRI, (1)H magnetic resonance spectroscopy (MRS) of liver and muscle, metabonomic profiling of blood and urine, and anthropometric and blood pressure measurements. Preterm subjects had greater (mean difference (95% CI)) total [2.21 L (0.3, 4.1), p = 0.03] and abdominal adipose tissue [internal 0.51 (0.1, 0.9), p = 0.007]; blood pressure [systolic 6.5 mm Hg (2.2, 10.8), p = 0.004; diastolic 5.9 (1.8, 10.1), p = 0.006]; and ectopic lipid (ratio (95% CI)), intrahepatocellular lipid (IHCL) 3.01 (1.78, 5.28) p < 0.001, and tibialis-intramyocellular lipid (T-IMCL) [1.31 (1.02, 1.69) p = 0.04]. In preterm, compared with term men, there was greater internal adipose tissue [mean (SD); men: preterm 4.0 (1.6), term 2.7 (1.1) liters; women: preterm 2.6 (0.9); term 2.6 (0.5); gender-gestation interaction p = 0.048] and significant differences in the urinary metabolome (elevated methylamines and acetyl-glycoproteins, lower hippurate). We have identified multiple premorbid biomarkers in ex-preterm young adults, which are most marked in men and indicative of risks to later wellbeing. These data offer insight into biological trajectories affected by preterm birth and/or neonatal care.

Download full-text PDF

Source
http://dx.doi.org/10.1203/PDR.0b013e31822d7860DOI Listing

Publication Analysis

Top Keywords

ectopic lipid
8
preterm birth
8
blood pressure
8
adipose tissue
8
preterm term
8
preterm
7
aberrant adiposity
4
adiposity ectopic
4
lipid
4
lipid deposition
4

Similar Publications

Background/objectives: Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects.

View Article and Find Full Text PDF

Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. To search for possible causes of this situation and possibilities of their favorable influence, we tested the effect of FF monotherapy and the combination of fenofibrate with silymarin on metabolic disorders in a unique model of hereditary hypertriglyceridemic rats (HHTg).

View Article and Find Full Text PDF

Obesity has emerged as a global epidemic with far-reaching health complications, including its role as an independent risk factor for chronic kidney disease (CKD). Increasing evidence suggests that obesity contributes to CKD through multiple mechanisms, including chronic inflammation, hemodynamic alterations, insulin resistance, and lipid accumulation. These processes can culminate in histopathological changes collectively referred to as obesity-related glomerulopathy (ORG).

View Article and Find Full Text PDF

High fructose rewires gut glucose sensing via glucagon-like peptide 2 to impair metabolic regulation in mice.

Mol Metab

January 2025

Québec Heart and Lung Institute Research Center, Université Laval - 2725, Ch. Sainte-Foy, Québec, QC, Canada, G1V 4G5; Department of Medicine, Faculty of Medicine, Université Laval - 1050 Av. de la Médecine, Québec, QC, Canada, G1V 0A6; Institute of Nutrition and Functional Foods, Université Laval - 2440 Bd. Hochelaga, Québec, QC, Canada, G1V 0A6. Electronic address:

Background: Increased fructose consumption contributes to type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanisms are ill-defined. Gut nutrient sensing involves enterohormones like Glucagon-like peptide (Glp)2, which regulates the absorptive capacity of luminal nutrients. While glucose is the primary dietary energy source absorbed in the gut, it is unknown whether excess fructose alters gut glucose sensing to impair blood glucose regulation and liver homeostasis.

View Article and Find Full Text PDF

A simple, reliable and easily generalizable cell-based assay for screening potential drugs that inhibit lipid accumulation.

Curr Res Toxicol

December 2024

Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Ectopic lipid deposition in the hepatocyte plays an important role in the development of nonalcoholic fatty liver disease (NAFLD), which has become one of the most common causes of chronic liver disease worldwide yet no approved drugs are currently available. In this study, a cell-based method was developed to screen potential drugs with low toxicity that inhibit lipid accumulation. In the same 96-well plate, cytotoxicity was measured using CCK8 assay, followed by lipid content detection using BODIPY 493/503 via fluorometry assay, a lipid droplet-specific fluorescent dye commonly used in microscopy and flow cytometry, but not previously reported in fluorometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!