Context: Stress cardiomyopathy (SC) is a transient form of acute heart failure triggered by stressful events and associated with a distinctive left ventricular (LV) contraction pattern. Various aspects of its clinical profile have been described in small single-center populations, but larger, multicenter data sets have been lacking so far. Furthermore, it remains difficult to quickly establish diagnosis on admission.
Objectives: To comprehensively define the clinical spectrum and evolution of SC in a large population, including tissue characterization data from cardiovascular magnetic resonance (CMR) imaging; and to establish a set of CMR criteria suitable for diagnostic decision making in patients acutely presenting with suspected SC.
Design, Setting, And Patients: Prospective study conducted at 7 tertiary care centers in Europe and North America between January 2005 and October 2010 among 256 patients with SC assessed at the time of presentation as well as 1 to 6 months after the acute event.
Main Outcome Measures: Complete recovery of LV dysfunction.
Results: Eighty-one percent of patients (n = 207) were postmenopausal women, 8% (n = 20) were younger women (aged ≤50 years), and 11% (n = 29) were men. A stressful trigger could be identified in 182 patients (71%). Cardiovascular magnetic resonance imaging data (available for 239 patients [93%]) revealed 4 distinct patterns of regional ventricular ballooning: apical (n = 197 [82%]), biventricular (n = 81 [34%]), midventricular (n = 40 [17%]), and basal (n = 2 [1%]). Left ventricular ejection fraction was reduced (48% [SD, 11%]; 95% confidence interval [CI], 47%-50%) in all patients. Stress cardiomyopathy was accurately identified by CMR using specific criteria: a typical pattern of LV dysfunction, myocardial edema, absence of significant necrosis/fibrosis, and markers for myocardial inflammation. Follow-up CMR imaging showed complete normalization of LV ejection fraction (66% [SD, 7%]; 95% CI, 64%-68%) and inflammatory markers in the absence of significant fibrosis in all patients.
Conclusions: The clinical profile of SC is considerably broader than reported previously. Cardiovascular magnetic resonance imaging at the time of initial clinical presentation may provide relevant functional and tissue information that might aid in the establishment of the diagnosis of SC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/jama.2011.992 | DOI Listing |
Radiol Clin North Am
March 2025
Radiology Department, Northwestern University Feinberg School of Medicine, Arkes Pavilion, 676 North St Clair Street, Suite 800, Chicago, IL 60611, USA. Electronic address:
Cardiac MR imaging and pulmonary MR angiography (MRA) are important clinical tools for the assessment of pulmonary vascular diseases. There are evolving noncontrast and contrast-enhanced techniques to evaluate pulmonary vasculature. Pulmonary MRA is a feasible imaging alternative to CTA in pulmonary embolism detection.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore. Electronic address:
Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
January 2025
Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.
Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).
Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.
J Clin Med
January 2025
Guthrie Cortland Medical Center, Cortland, NY 13045, USA.
Artificial intelligence (AI) in echocardiography represents a transformative advancement in cardiology, addressing longstanding challenges in cardiac diagnostics. Echocardiography has traditionally been limited by operator-dependent variability and subjective interpretation, which impact diagnostic reliability. This study evaluates the role of AI, particularly machine learning (ML), in enhancing the accuracy and consistency of echocardiographic image analysis and its potential to complement clinical expertise.
View Article and Find Full Text PDFJ Clin Med
January 2025
Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
Extracellular volume (ECV) by cardiovascular magnetic resonance (CMR) imaging is associated with disease burden and clinical outcomes. Recent studies in patients with valvular heart disease (VHD) have suggested that the indexed total ECV (iECV) = ECVx(LV/1.05)/body surface area may supersede ECV in terms of prognostication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!