Purpose: To examine the usefulness of diffusion kurtosis imaging for the diagnosis of Parkinson disease (PD).
Materials And Methods: Examinations were performed with the understanding and written consent of each subject, with local ethics committee approval, and in compliance with national legislation and Declaration of Helsinki guidelines. Diffusion-weighted magnetic resonance imaging was performed in 30 patients with idiopathic PD (mean age, 64.5 years ± 3.4 [standard deviation]) and 30 healthy subjects (mean age, 65.0 years ± 5.1). Mean kurtosis, fractional anisotropy, and mean, axial, and radial diffusivity of the basal ganglia were compared between the groups. Disease severity was assessed by using Hoehn and Yahr staging and the motor section of the Unified Parkinson's Disease Rating Scale (mean scores, 2.0 and 33.6, respectively). Receiver operating characteristic (ROC) analysis was used to compare the diagnostic accuracies of the indexes of interest. Pearson correlation coefficient analysis was used to correlate imaging findings with disease severity.
Results: Mean kurtosis in the putamen was higher in the PD group (0.93 ± 0.15) than in the control group (0.71 ± 0.09) (P < .000416). The area under the ROC curve (AUC) was 0.95 for both the ipsilateral putamen and the ipsilateral substantia nigra. The mean kurtosis for the ipsilateral substantia nigra had the best diagnostic performance (mean cutoff, 1.10; sensitivity, 0.92; specificity, 0.87). In contrast, AUCs for the tensor-derived indexes ranged between 0.43 (axial and radial diffusivity in substantia nigra) and 0.65 (fractional anisotropy in substantia nigra).
Conclusion: Diffusion kurtosis imaging in the basal ganglia, as compared with conventional diffusion-tensor imaging, can improve the diagnosis of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.11102277 | DOI Listing |
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: We examined racial differences between measures of limbic white matter tracts and objective sleep parameters in cognitively unimpaired older-adults.
Method: This cross-sectional study included 170 community-dwelling cognitively unimpaired older-adults (mean±SD: age = 67.2±5.
Acad Radiol
December 2024
Mallinckrodt Institute of Radiology, Washington University in Saint Louis, St. Louis, MO (A.N.). Electronic address:
Brain Behav
January 2025
Department of Radiology, Liuzhou Worker's Hospital, Guangxi, China.
Background: Adult glioblastomas (GBMs) are associated with high recurrence and mortality. Personalized treatment based on molecular markers may help improve the prognosis. We aimed to evaluate whether apparent diffusion coefficient (ADC) histogram analysis can better predict MGMT and TERT molecular characteristics and to determine the prognostic relevance of genetic profile in patients with GBM.
View Article and Find Full Text PDFSci Rep
December 2024
The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, Shanxi, People's Republic of China.
This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI (T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) and enhanced tumor area (ETA) were selected for analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!