Objective: To investigate and compare the hepatoprotective effects of crude ethanolic and aqueous extracts of Phyllanthus acidus (L.) Skeels (P. acidus) leaves on acetaminophen (APAP) and thioacetamide (TAA) induced liver toxicity in wistar rats. Silymarin was the reference hepatoprotective agent.
Methods: In two different sets of experiments, the P. acidus extracts (200 and 400 mg/kg, body weight) and silymarin (100 mg/kg, body weight) were given orally for 7 days and a single dose of APAP (2 g/kg, per oral) or TAA (100 mg/kg, subcutaneous) were given to rats. The level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin and total protein were monitored to assess hepatotoxicity and hepatoprotection.
Results: APAP or TAA administration caused severe hepatic damage in rats as evident from significant rise in serum AST, ALT, ALP, total bilirubin and concurrent depletion in total serum protein. The P. acidus extracts and silymarin prevented the toxic effects of APAP or TAA on the above serum parameters indicating the hepatoprotective action. The aqueous extract was found to be more potent than the corresponding ethanolic extract against both toxicants. The phenolic and flavonoid content (175.02±4.35 and 74.68±1.28, respectively) and 2,2-diphenyl-1-picrylhydrazil (DPPH) [IC(50) = (33.2±0.31)μg/mL] scavenging potential was found maximum with aqueous extract as compared to ethanolic extract.
Conclusions: The results of present study suggests that the aqueous extract of P. acidus leaves has significant hepatoprotective activity on APAP and TAA induced hepatotoxicity, which might be associate with its high phenolic and flavonoid content and antioxidant properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1995-7645(11)60128-4 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment.
View Article and Find Full Text PDFToxicology
December 2024
Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries.
View Article and Find Full Text PDFJ Pharm Biomed Anal
May 2024
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. Electronic address:
Cell Death Dis
July 2023
Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
Drug-induced liver injury (DILI) is the leading cause of acute liver failure (ALF). Continuous and prolonged hepatic cellular oxidative stress and liver inflammatory stimuli are key signatures of DILI. DEAD-box helicase 3, X-linked (DDX3X) is a central regulator in pro-survival stress granule (SG) assembly in response to stress signals.
View Article and Find Full Text PDFCurr Med Sci
June 2023
Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Objective: Little is known about the role of microRNA-29a-3p (miR-29a-3p) in inflammation-related pyroptosis, especially in drug-induced acute liver failure (DIALF). This study aimed to identify the relationship between miR-29a-3p and inflammation-related pyroptosis in DIALF and confirm its underlying mechanisms.
Methods: Thioacetamide (TAA)- and acetaminophen (APAP)-induced ALF mouse models were established, and human samples were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!