Drug release from a pH-sensitive multiblock co-polymer thermogel.

J Biomater Sci Polym Ed

a Department of Pharmaceutics, School of Pharmacy , The Universityof Mississippi , University, MS-38677 , USA.

Published: May 2016

A Pluronic(®)-based pH-sensitive multiblock co-polymer thermogel has been proposed for sustained release of therapeutic agents. Hydrophobic small-molecule drugs (paclitaxel and camptothecin) and model hy-drophilic macromolecules (fluorescein-labeled dextrans of molecular mass 10, 20, 40, 150 and 250 kDa) were successfully loaded into and released from the thermogels. Drug-loaded polymer solutions were characterized for gelation behavior and micelle size. Drug loading increased the size of the multiblock co-polymer micelles from 20 to 100 nm. The co-polymer improved paclitaxel and camptothecin loading in an aqueous solution by 6900- and 1050-fold, respectively, compared to their solubility in water. The ther-mogels released loaded drugs in a pH-dependent fashion, regardless of their properties. At pH 5.0 and 6.5, paclitaxel and camptothecin completely released in 4 and 15 days, respectively, by a combined mechanism of diffusion and erosion. At neutral pH, diffusion predominated gel erosion to sustain the drug release up to 40 days. Fluorescein-labeled dextran release from the thermogels showed a similar pH-dependent trend as the hydrophobic small molecule drugs. However, dextran release at neutral pH was entirely dependent on the molecular mass of the dextran. Low-molecular-mass (10 and 20 kDa) dextrans were completely released in 12 and 21 days, respectively, while high-molecular-mass (⩾40 kDa) dextrans being continuously released over 36 days, indicating that the threshold of molecular weight necessary for sustained release of a hydrophilic macromolecule from this thermogel (e.g., enzymes, monoclonal antibodies and immunotoxins) is 40 kDa. Taken together, the MBCP thermogel showed potential as a controlled drug-delivery system that showed sustained release of both hydrophilic and lipophilic molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050611X584414DOI Listing

Publication Analysis

Top Keywords

multiblock co-polymer
12
sustained release
12
paclitaxel camptothecin
12
released days
12
drug release
8
ph-sensitive multiblock
8
co-polymer thermogel
8
molecular mass
8
completely released
8
dextran release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!