Gibberellin partly mediates LANCEOLATE activity in tomato.

Plant J

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel.

Published: November 2011

AI Article Synopsis

  • The shape of compound leaves, like those of tomato plants, is influenced by ongoing changes during leaf development.
  • LA, a transcription factor, is essential for leaf differentiation and is regulated by a microRNA called miR319, where changes in its activity affect leaf size and shape.
  • The research indicates that LA's effectiveness involves plant hormones called gibberellins (GA), with higher GA levels promoting more complex leaf structures.

Article Abstract

Elaboration of a compound leaf shape depends on extended morphogenetic activity in developing leaves. In tomato (Solanum lycopersicum), the CIN-TCP transcription factor LANCEOLATE (LA) promotes leaf differentiation. LA is negatively regulated by miR319 during the early stages of leaf development, and decreased sensitivity of LA mRNA to miR319 recognition in the semi-dominant mutant La leads to prematurely increased LA expression, precocious leaf differentiation and a simpler and smaller leaf. Increased levels or responses of the plant hormone gibberellin (GA) in tomato leaves also led to a simplified leaf form. Here, we show that LA activity is mediated in part by GA. Expression of the SlGA20 oxidase1 (SlGA20ox1) gene, which encodes an enzyme in the GA biosynthesis pathway, is increased in gain-of-function La mutants and reduced in plants that over-express miR319. Conversely, the transcript levels of the GA deactivation gene SlGA2 oxidase4 (SlGA2ox4) are increased in plants over-expressing miR319. The miR319 over-expression phenotype is suppressed by exogenous GA application and by a mutation in the PROCERA (PRO) gene, which encodes an inhibitor of the GA response. SlGA2ox4 is expressed in initiating leaflets during early leaf development. Its expression expands as a result of miR319 over-expression, and its over-expression leads to increased leaf complexity. These results suggest that LA activity is partly mediated by positive regulation of the GA response, probably by regulation of GA levels.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2011.04716.xDOI Listing

Publication Analysis

Top Keywords

leaf
8
leaf differentiation
8
leaf development
8
gene encodes
8
mir319 over-expression
8
mir319
6
increased
5
gibberellin partly
4
partly mediates
4
mediates lanceolate
4

Similar Publications

Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.

View Article and Find Full Text PDF

Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci).

View Article and Find Full Text PDF

Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes.

View Article and Find Full Text PDF

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.

Transgenic Res

January 2025

Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.

The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!