Kinematic study of locomotor recovery after spinal cord clip compression injury in rats.

J Neurotrauma

Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes of Health Research and Groupe de Recherche sur le Système Nerveux Central of the Fonds de la Recherche en Santé du Québec, Canada Research Chair on the Spinal Cord, Department of Physiology, University of Montreal, Montreal, Quebec, Canada.

Published: September 2011

After spinal cord injury (SCI), precise assessment of motor recovery is essential to evaluate the outcome of new therapeutic approaches. Very little is known on the recovery of kinematic parameters after clinically-relevant severe compressive/contusive incomplete spinal cord lesions in experimental animal models. In the present study we evaluated the time-course of kinematic parameters during a 6-week period in rats walking on a treadmill after a severe thoracic clip compression SCI. The effect of daily treadmill training was also assessed. During the recovery period, a significant amount of spontaneous locomotor recovery occurred in 80% of the rats with a return of well-defined locomotor hindlimb pattern, regular plantar stepping, toe clearance and homologous hindlimb coupling. However, substantial residual abnormalities persisted up to 6 weeks after SCI including postural deficits, a bias of the hindlimb locomotor cycle toward the back of the animals with overextension at the swing/stance transition, loss of lateral balance and impairment of weight bearing. Although rats never recovered the antero-posterior (i.e. homolateral) coupling, different levels of decoupling between the fore and hindlimbs were measured. We also showed that treadmill training increased the swing duration variability during locomotion suggesting an activity-dependent compensatory mechanism of the motor control system. However, no effect of training was observed on the main locomotor parameters probably due to a ceiling effect of self-training in the cage. These findings constitute a kinematic baseline of locomotor recovery after clinically relevant SCI in rats and should be taken into account when evaluating various therapeutic strategies aimed at improving locomotor function.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2011.1840DOI Listing

Publication Analysis

Top Keywords

locomotor recovery
12
spinal cord
12
clip compression
8
kinematic parameters
8
treadmill training
8
locomotor
7
recovery
6
rats
5
kinematic
4
kinematic study
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: The prevalence of sepsis and delirium in the elderly is a risk factor for subsequent diagnosis of Alzheimer's disease and related dementias (ADRD). Post-sepsis impairments include changes in memory, attention, emotional function, and neuromuscular strength. Studies have shown a link between the prolonged activation of microglia after infection.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a devastating pathological state causing motor, sensory, and autonomic dysfunction. To date, SCI remains without viable treatment for its patients. After the injury, molecular events centered at the lesion epicenter create a non-permissive environment for cell survival and regeneration.

View Article and Find Full Text PDF

Addressing the Effect of Exercise on Glial Cells: Focus on Ependymal Cells.

J Integr Neurosci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy.

A growing body of research highlights the positive impact of regular physical activity on improving physical and mental health. On the other hand, physical inactivity is one of the leading risk factors for noncommunicable diseases and death worldwide. Exercise profoundly impacts various body districts, including the central nervous system.

View Article and Find Full Text PDF

Background: 95% of men with spinal cord injuries exhibit difficulties with sexual function, including erectile dysfunction, anejaculation, retrograde ejaculation, poor ejaculatory force, and poor sperm quality.

Aim: The primary goal is to determine if well-established interventions, such as spinal cord epidural stimulation, are a feasible treatment for sexual dysfunction and if locomotor recovery training can be used to improve ejaculatory function in a rodent model of spinal cord injury (SCI).

Methods: Male Wistar rats underwent thoracic laminectomies (shams), spinal cord transections, or moderate spinal cord contusion injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!