The effect of the environmental contaminant, bisphenol A, on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) in Madin-Darby canine kidney (MDCK) cells is unclear. This study explored whether bisphenol A changed basal [Ca(2+)](i) levels in suspended MDCK cells by using fura-2 as a Ca(2+)-sensitive fluorescent dye. Bisphenol A, at concentrations between 50 and 300 µM, increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced, partly, by removing extracellular Ca(2+). Bisphenol A induced Mn(2+) influx, leading to quenching of fura-2 fluorescence, suggesting Ca(2+) influx. This Ca(2+) influx was inhibited by phospholipase A2 inhibitor aristolochic acid, store-operated Ca(2+) channel blockers nifedipine and SK&F96365, and protein kinase C inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with the mitochondrial uncoupler, carbonylcyanide m-chlorophenylhydrazone (CCCP), and the endoplasmic reticulum Ca(2+) pump inhibitors, thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ), inhibited bisphenol A-induced Ca(2+) release. Conversely, pretreatment with bisphenol A abolished thapsigargin (or BHQ)- and CCCP-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 abolished bisphenol-induced [Ca(2+)](i) rise. Bisphenol A caused a concentration-dependent decrease in cell viability via apoptosis in a Ca(2+)-independent manner. Collectively, in MDCK cells, bisphenol A induced [Ca(2+)](i) rises by causing phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and mitochondria and Ca(2+) influx via phospholipase A2-, protein kinase C-sensitive, store-operated Ca(2+) channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/01480545.2011.556645 | DOI Listing |
Virulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.
View Article and Find Full Text PDFCells Dev
December 2024
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32605, United States of America; Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32605, United States of America; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32605, United States of America. Electronic address:
Transitions between solid-like and fluid-like states in living tissues have been found in steps of embryonic development and in stages of disease progression. Our current understanding of these transitions has been guided by experimental and theoretical investigations focused on how motion becomes arrested with increased mechanical coupling between cells, typically as a function of packing density or cell cohesiveness. However, cells actively respond to externally applied forces by contracting after a time delay, so it is possible that at some packing densities or levels of cell cohesiveness, mechanical coupling stimulates cell motion instead of suppressing it.
View Article and Find Full Text PDFPhys Rev E
November 2024
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
Wound healing is a complex biological process critical for maintaining an organism's structural integrity and tissue repair following an infection or injury. Recent studies have unveiled the mechanisms involving the coordination of biochemical and mechanical responses in the tissue in wound healing. In this article, we focus on the healing property of an epithelial tissue as a material while the effects of biological mechanisms such as cell proliferation, tissue intercalation, cellular migration, cell crawling, and filopodia protrusion is minimal.
View Article and Find Full Text PDFMolecules
December 2024
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Influenza is a disease of significant morbidity and mortality. The number of anti-influenza drugs is small; many of them stimulate the appearance of resistant strains. This article presents the results of assessing the antiviral activity of 1,2,3-triazole-containing derivatives of alkaloid lupinine for their ability to suppress the reproduction of orthomyxoviruses (influenza viruses: A/Vladivostok/2/09 (H1N1) and A/Almaty/8/98 (H3N2)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!