Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of (87)Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10(-11)τ(-1/2), where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.240801DOI Listing

Publication Analysis

Top Keywords

coherence time
8
clock transition
8
optically trapped
8
quantum memories
8
extended coherence
4
time clock
4
transition optically
4
trapped rubidium
4
rubidium optically
4
trapped ensembles
4

Similar Publications

Purpose: To characterize the anterior segment (AS) morphology of patients with long-term silicone oil (SiO) in situ (> 12 months) following pars plana vitrectomy (PPV).

Methods: This prospective, comparative characterization study was conducted between January 2022 and July 2023. Patients were included and sorted based on if they had undergone PPV without long-term SiO or had SiO in situ for at least 12 months at the time of review and image collection.

View Article and Find Full Text PDF

Characterization of the upgraded photoinjector at the Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility.

Rev Sci Instrum

January 2025

National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.

The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.

View Article and Find Full Text PDF

Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing.

J Pers Med

January 2025

Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA.

: Augmented reality (AR) may allow vitreoretinal surgeons to leverage microscope-integrated digital imaging systems to analyze and highlight key retinal anatomic features in real time, possibly improving safety and precision during surgery. By employing convolutional neural networks (CNNs) for retina vessel segmentation, a retinal coordinate system can be created that allows pre-operative images of capillary non-perfusion or retinal breaks to be digitally aligned and overlayed upon the surgical field in real time. Such technology may be useful in assuring thorough laser treatment of capillary non-perfusion or in using pre-operative optical coherence tomography (OCT) to guide macular surgery when microscope-integrated OCT (MIOCT) is not available.

View Article and Find Full Text PDF

Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique.

Biomimetics (Basel)

January 2025

Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.

Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.

View Article and Find Full Text PDF

Elusive Gains of Cognitive Training: Limited Effects on Neural Activity Across Sessions.

Brain Sci

December 2024

Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, 10000 Zagreb, Croatia.

Background/objectives: Cognitive training paradigms rely on the idea that consistent practice can drive neural plasticity, improving not only connectivity within critical brain networks, but also ultimately result in overall enhancement of trained cognitive functions, irrespective of the specific task. Here we opted to investigate the temporal dynamics of neural activity and cognitive performance during a structured cognitive training program.

Methods: A group of 20 middle-aged participants completed 20 training sessions over 10 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!