Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-irradiance short-pulse lasers incident on solid density thin foils provide high-energy, picosecond-duration, and monochromatic K(α) x-ray sources, but with limited conversion efficiency ϵ of laser energy into K(α) x-ray energy. A novel two-stage target concept is proposed that utilizes ultrahigh-contrast laser interactions with primary ultrathin foils in order to efficiently generate and transport in large quantities only the most effective K(α)-producing high-energy electrons into secondary x-ray converter foils. Benchmarked simulations with no free numerical parameters indicate an ϵ enhancement greater than tenfold over conventional single targets may be possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.106.235002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!