Quantum chemical computations (B3LYP/6-31+G(d,p)) were applied to examine the mechanisms of dyotropic rearrangements of spirolactones in order to assess whether these reactions are concerted. Mechanistic experiments, designed on the basis of the results of these calculations, support the conclusions derived from theory. In particular, Zn(II) salts or Brønsted acids induce stepwise dyotropic processes, whereas dyotropic rearrangements mediated by silyltriflates are concerted processes. Additional products isolated with Zn(II) salts support a stepwise process with a carbocationic intermediate. Furthermore, a facile Grob-type fragmentation emanating from both a tricyclic-β-lactone and a spiro-γ-lactone was identified.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo2012175DOI Listing

Publication Analysis

Top Keywords

dyotropic rearrangements
12
mechanisms dyotropic
8
znii salts
8
switching concerted
4
concerted stepwise
4
stepwise mechanisms
4
dyotropic
4
rearrangements β-lactones
4
β-lactones leading
4
leading spirocyclic
4

Similar Publications

Chemoselectivity in Pd-Based Dyotropic Rearrangement: Development and Application in Total Synthesis of Pheromones.

J Am Chem Soc

January 2025

Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland.

In the dyotropic rearrangement of molecules with semiflexible structures, characterized by a freely rotating static C-C bond, the formation of a mixture of products is common due to the coexistence of several energetically comparable conformers. Herein, we report that it is possible to modulate the shifting groups by adjusting the metal's coordination sphere in Pd-based dyotropic rearrangement. In the presence of a catalytic amount of Pd(II) salt, the reaction of γ-hydroxyalkenes or γ,δ-dihydroxyalkenes with Selectfluor affords fluorinated tetrahydropyranols or 6,8-dioxabicyclo[3.

View Article and Find Full Text PDF

Biomimetic Synthesis of Azorellolide via Cyclopropylcarbinyl Cation Chemistry.

J Am Chem Soc

January 2025

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

A concise synthesis of the complex diterpene azorellolide, inspired by speculations on biosynthetic cationic cascades, is presented. The approach, guided by computation, relies on the intramolecular interception of a cyclopropylcarbinyl cation by an appended carboxylate. The successful execution of this strategy was achieved through acid-catalyzed isomerization of a β-lactone in competition with a type I dyotropic rearrangement.

View Article and Find Full Text PDF

Chemoselective Pd-Based Dyotropic Rearrangement: Fluorocyclization and Regioselective Wacker Reaction of Homoallylic Amides.

J Am Chem Soc

November 2024

Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland.

Article Synopsis
  • - The study introduces a new method for creating fluorinated heterocycles by utilizing a Pd(II)-catalyzed process that efficiently converts homoallylic amides into 5,6-dihydro-4-1,3-oxazines in just one step.
  • - This process involves a complex sequence of reactions including oxypalladation, Pd oxidation, dyotropic rearrangement, and reductive elimination, resulting in the formation of three new chemical bonds.
  • - Additionally, the research develops a one-pot method that transforms these starting materials into homologated ketones via a unique regioselective Wacker oxidation reaction of 1,1-disubstituted alkenes.
View Article and Find Full Text PDF

Dyotropic Rearrangement of β-Lactams: Reaction Development, Mechanistic Study, and Application to the Total Syntheses of Tricyclic Marine Alkaloids.

Angew Chem Int Ed Engl

January 2025

School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China.

Article Synopsis
  • An innovative method for rearranging β-lactams has been introduced, allowing for the creation of various γ-butyrolactams.
  • This reaction is unique because it likely operates through a dual-activation process, leading to distinct reactivity and selectivity compared to traditional β-lactone rearrangements.
  • Studies show that the mechanism of this rearrangement can vary based on the type of groups involved (hydrogen, alkyl, or aryl), and this approach has successfully enabled the synthesis of complex marine alkaloids in relatively few steps.
View Article and Find Full Text PDF

Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thioesters was performed for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!