A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antimicrobial membrane cellulose acetate containing ionic liquid and metal nanoparticles. | LitMetric

Antimicrobial membrane cellulose acetate containing ionic liquid and metal nanoparticles.

J Nanosci Nanotechnol

Institute of Chemistry, UFRGS, Av Bento Gonçalves, 9500, 91501-970, PO Box 15003-Porto Alegre-RS, Brazil.

Published: June 2011

Stable metallic Au(0), Ag(0) and Pt(0) nanoparticle-containing membrane films (20 microm thickness) were obtained by combining irregularly shaped nanoparticles of monomodal size distributions (11 +/- 1.5 nm Au(0), 8.9 +/- 2.1 nm Ag(0) and 2.8 +/- 0.4 nm Pt(0)) in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (BMI x (NTf)2) with a syrup of cellulose acetate (CA) in acetone. The presence of small and stable Au(0), Ag(0) or Pt(0) nanoparticles induced an augmentation in the CA/IL film surface areas. The addition of the IL to the membrane resulted in an increase of its elasticity and a decrease in its tenacity and toughness, whereas its stress at break was not influenced. High antimicrobial activity was observed in membranes containing Au(0), Ag(0) and Pt(0) metal concentrations as low as 1 mg of metal per 5 g of CA. The CA/IL/nanoparticle combination enhanced the activity and durability of the metal nanoparticles and provided greater antimicrobial activity against E. coli and S. aureus bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4117DOI Listing

Publication Analysis

Top Keywords

au0 ag0
12
ag0 pt0
12
cellulose acetate
8
ionic liquid
8
metal nanoparticles
8
antimicrobial activity
8
antimicrobial membrane
4
membrane cellulose
4
acetate ionic
4
metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!