Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have used small angle X-ray scattering (SAXS) to quantitatively characterize the morphology of vertically aligned (VA) multiwall carbon nanotube (MWCNT) arrays. We examined the extent of alignment of MWCNTs in terms of order parameter by analyzing SAXS intensity as a function of azimuthal angle. The SAXS measurements at different heights of CNT arrays from the substrate reveal two distinct morphologies and increasing alignment. We are able to quantitatively characterize a real variation in CNT diameters of the VA-MWCNTs through model fitting of the SAXS spectra. It found that the average CNT diameter increases with increasing distance from the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.4110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!