Download full-text PDF

Source
http://dx.doi.org/10.7326/0003-4819-155-2-201107190-00016DOI Listing

Publication Analysis

Top Keywords

addressing missing
4
missing data
4
data clinical
4
clinical trials
4
addressing
1
data
1
clinical
1
trials
1

Similar Publications

A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism.

Sensors (Basel)

January 2025

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.

With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.

View Article and Find Full Text PDF

Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography.

Sensors (Basel)

January 2025

Department of Biomedical and Robotics Engineering, Incheon National University, Incheon 22012, Republic of Korea.

With the rise of modern healthcare monitoring, heart rate (HR) estimation using remote photoplethysmography (rPPG) has gained attention for its non-contact, continuous tracking capabilities. However, most HR estimation methods rely on stable, fixed sampling intervals, while practical image capture often involves irregular frame rates and missing data, leading to inaccuracies in HR measurements. This study addresses these issues by introducing low-complexity timing correction methods, including linear, cubic, and filter interpolation, to improve HR estimation from rPPG signals under conditions of irregular sampling and data loss.

View Article and Find Full Text PDF

Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.

View Article and Find Full Text PDF

The Application of an Intelligent -Harvesting Device Based on FES-YOLOv5s.

Sensors (Basel)

January 2025

Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing 210014, China.

To address several challenges, including low efficiency, significant damage, and high costs, associated with the manual harvesting of , in this study, a machine vision-based intelligent harvesting device was designed according to its agronomic characteristics and morphological features. This device mainly comprised a frame, camera, truss-type robotic arm, flexible manipulator, and control system. The FES-YOLOv5s deep learning target detection model was used to accurately identify and locate .

View Article and Find Full Text PDF

In this paper, a novel particle filter based on one-step smoothing is proposed for nonlinear systems with random one-step delay and missing measurements. Such problems are commonly encountered in networked control systems, where random one-step delay and missing measurements significantly increase the difficulty of dynamic state estimation. The particle filter is a nonlinear filtering method based on sequential Monte Carlo sampling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!