Nanomaterials in humans: identification, characteristics, and potential damage.

Toxicol Pathol

Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital University of Medical Sciences, Beijing, China.

Published: August 2011

Nanomaterials are increasingly being used for commercial purposes. However, concerns about the potential risks of exposure to humans have been raised. We previously reported unusual pulmonary disease and death in a group of patients with occupational exposure to spray paint. However, the nanoparticle and chemical composition of the exposure was not fully described. The present study aimed to isolate and identify the nanoparticles observed in the patients' biopsies and report the potential deleterious effects to human lungs using electron microscopy. Using electron microscopy and energy dispersive x-ray analysis, silica nanoparticles were identified and characterized mainly in macrophages, pulmonary microvessels, vascular endothelial cells, microlymphatic vessels, pleural effusions, and a few in alveolar epithelial cells and pulmonary interstitial tissue (with no microscale particles present). Notably, damage to alveolar epithelial cells, macrophages, vascular endothelial cells, and the blood-gas barrier was observed. Given the well-documented toxicity of microscale silica, it is possible that these silica nanoparticles may have contributed in part to the illness reported in these workers. Such a possibility supports the adoption of controls and prevention strategies to minimize inhalation of nanoparticles by workers, and it highlights the urgent need and the importance of the nanosafety study in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706159PMC
http://dx.doi.org/10.1177/0192623311413787DOI Listing

Publication Analysis

Top Keywords

electron microscopy
8
silica nanoparticles
8
vascular endothelial
8
endothelial cells
8
alveolar epithelial
8
epithelial cells
8
nanomaterials humans
4
humans identification
4
identification characteristics
4
characteristics potential
4

Similar Publications

Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.

View Article and Find Full Text PDF

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

Palygorskite exhibits distinctive morphological and textural characteristics due to its fibrous and micropore nature. This research experimentally investigates the microstructure of palygorskite and how acid treatment changes the fibrous shape and ability to adsorb. Acetic and hydrochloric acid were used to study the effect of acid on palygorskite fibrous morphology.

View Article and Find Full Text PDF

An applied noise model for scintillation-based CCD detectors in transmission electron microscopy.

Sci Rep

January 2025

Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, 33098, Paderborn, Germany.

Measurements in general are limited in accuracy by the presence of noise. This also holds true for highly sophisticated scintillation-based CCD cameras, as they are used in medical applications, astronomy or transmission electron microscopy. Further, signals measured with pixelated detectors are convolved with the inherent detector point spread function.

View Article and Find Full Text PDF

Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!