Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The simulation of nonlinear propagation of ultrasound waves is typically based on the Kuznetsov-Zabolotskaya- Khokhlov equation. A set of simulators has been proposed in the literature but none of them takes into account a possible spatial 3-D variation of the nonlinear parameter in the investigated medium. This paper proposes a generalization of the angular spectrum method (GASM) including the spatial variation of the nonlinear parameter. The proposed method computes the evolution of the fundamental and second-harmonic waves in four dimensions (spatial 3-D and time). For validation purposes, the one-way fields produced by the GASM are first compared with those produced by established reference simulators and with experimental one-way fields in media with a homogeneous nonlinear parameter. The same simulations are repeated for media having an axial variation of the nonlinear parameter. The mean errors estimated in the focal region are less than 4.0% for the fundamental and 5.4% for the second harmonic in all cases. Finally, the fundamental and second-harmonic fields simulated for media having nonlinear parameter variations in the axial, lateral, and elevation directions, which cannot be simulated with other currently available methods, are presented. The new approach is also shown to yield a reduction in computation time by a factor of 13 with respect to the standard nonlinear simulator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2011.1956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!