Vibrational spectroscopy investigation and HOMO, LUMO analysis using DFT (B3LYP) on the structure of 1,3-dichloro 5-nitrobenzene.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Physics, Cauvery College for Women, Tiruchirappalli 620018, India.

Published: October 2011

Vibrational spectral measurements, namely, FT-infrared (4000-400 cm(-1)) and FT-Raman (3500-50 cm(-1)) spectra have been made for 1,3-dichloro 5-nitrobenzene (DCNB) and assigned to different normal modes of the molecule. Optimized geometrical structure, harmonic vibrational frequencies, intensities, Mulliken's net charges and several thermodynamic parameters in the ground state have been computed by the B3LYP, density functional method using 6-311+G(d,p),6-311++G(d,p) basis sets. Complete assignments of the observed spectra have been proposed. Most of the modes have wave numbers in the expected range. Coupling of vibrations has been determined by calculating total energy distributions (TED) with the help of specific scaling procedures. The calculated HOMO and LUMO energies and electrostatic potential shows that charge transfer occurs within the molecule. The results of the calculations were applied to simulated infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2011.06.005DOI Listing

Publication Analysis

Top Keywords

homo lumo
8
13-dichloro 5-nitrobenzene
8
observed spectra
8
vibrational spectroscopy
4
spectroscopy investigation
4
investigation homo
4
lumo analysis
4
analysis dft
4
dft b3lyp
4
b3lyp structure
4

Similar Publications

Exploring the effect of Zr/B ratio on the stability and reactivity of activated ε-caprolactone complexes: A DFT, QTAIM and NCI study.

J Mol Graph Model

January 2025

Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand. Electronic address:

Monomer insertion, leading to the formation of an activated monomer complex, is a critical step in cationic ring-opening polymerization (CROP) of cyclic monomers, such as ε-caprolactone (CL). In this study, Density Functional Theory (DFT) calculations were employed to investigate the structural and electronic properties of four activated complexes at two Zr:B ratios (1:2 and 1:1), where Zr is the cationic zirconocene catalyst, Cp₂ZrMe⁺, and B is the borate cocatalyst, [MeB(CF)] or [B(CF)]. Steric hindrance at the reactive site was analyzed using topographic steric maps, while inter- and intramolecular interactions of the complex systems were examined through the Quantum Theory of Atoms in Molecules (QTAIM) and non-covalent interaction (NCI) analyses.

View Article and Find Full Text PDF

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Highly efficient degradation of perfluoroalkyl substances (PFAS) by a novel polytetrafluoroetylene piezocatalyst.

J Hazard Mater

January 2025

School of Materials, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China. Electronic address:

Article Synopsis
  • PFAS are toxic pollutants that are tough to break down due to strong chemical bonds.
  • Researchers found a method using PTFE, a harmless material, as a piezocatalyst to degrade PFAS effectively.
  • This technique achieved a 93.4% degradation of PFOA and works on other PFAS compounds, offering a promising solution for cleaning contaminated water.
View Article and Find Full Text PDF

Photooxidation and Cleavage of Ethynylated 9,10-Dimethoxyanthracenes with Acid-Labile Ether Bonds.

J Org Chem

January 2025

Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States.

This paper describes a series of 12 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (O). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA).

View Article and Find Full Text PDF

A series of 2,6-di(pyrazine-2-yl)pyridine (dppy) ligands - of varying substituents of different electronic nature (-NMe, -OMe,-Me, and -Cl) in the 4-position of the pyridine moiety has been designed and synthesized to study the binding behavior of the dppy ligands towards Bovine Serum Albumin (BSA), a low-cost serum albumin protein. The interaction between ligands and BSA has been studied using UV-Visible and fluorescence spectroscopy and molecular docking studies. The fluorescence of BSA was found to be quenched in the presence of all the ligands , in which ligand , having the most electron donating group NMe exhibits the maximum binding affinity towards BSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!