Recombinant xylanase preparations from Nonomuraea flexuosa (Nf Xyn, GH11) and Thermoascus aurantiacus (Ta Xyn, GH10) were evaluated for their abilities to hydrolyze hydrothermally pretreated wheat straw. The GH family 10 enzyme Ta Xyn was clearly more efficient in solubilizing xylan from pretreated wheat straw. Improvement of the hydrolysis of hydrothermally pretreated wheat straw by addition of the thermostable xylanase preparations to thermostable cellulases was evaluated. Clear synergistic enhancement of hydrolysis of cellulose was observed when cellulases were supplemented even with a low amount of pure xylanases. Xylobiose was the main hydrolysis product from xylan. It was found that the hydrolysis of cellulose increased nearly linearly with xylan removal during the enzymatic hydrolysis. The results also showed that the xylanase preparation from T. aurantiacus, belonging to GH family 10 always showed better hydrolytic capacity of solubilizing xylan and acting synergistically with thermostable cellulases in the hydrolysis of hydrothermally pretreated wheat straw.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2011.06.085 | DOI Listing |
Int J Mol Sci
January 2025
College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
Drought stress severely damages wheat growth and photosynthesis, and plants at the grain-filling stage are the most sensitive to drought throughout the entire period of development. Exogenous spraying of sodium nitroprusside (SNP) can alleviate the damage to wheat caused by drought stress, but the mechanism regulating the proline pathway remains unknown. Two wheat cultivars, drought-sensitive Zhoumai 18 and drought-tolerant Zhengmai 1860, were used as materials when the plants were cultivated to the grain-filling stage.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China.
Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!