We measure genetic variation in lifespan and fecundity at two food levels in 34 core lines of the Drosophila Genetic Reference Panel collection. Lines were significantly different from each other in lifespan and fecundity at both restricted and full food. There was a strong food-by-line interaction for the slope of age-specific mortality, fecundity and proportion of fertilized eggs, indicating the presence of genetic variation for the strength of the dietary restriction effect, likely to represent standing genetic variation in a natural population from which the lines used have originated. No trade-off between fecundity and lifespan manifested in life-history variation among inbred lines. Our data partially corroborate the recent proposition that availability of nutrient-free water eliminates the apparent dietary restriction at least in some conditions. Although flies on full food with water added had lifespan slightly higher than those without a water source, it was still significantly lower than that in flies on restricted food, with no indication of interaction. We fully corroborate the recently discovered effect of addition of essential amino acids to the medium: addition of 1.5 mM methionine to restricted food significantly increased fecundity without a measurable decrease in lifespan; addition of each of 10 essential amino acids increased fecundity and decreased females lifespan to the levels observed on full food, again with no evidence of line-by-food interactions. We propose a mechanistic hypothesis explaining the observed data, based on the assumption that food consumption by flies is adjusted according to flies' saturation in water and methionine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S001667231100019X | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!