Copper and iron in Alzheimer's disease: a systematic review and its dietary implications.

Br J Nutr

European University Viadrina, Institute of Transcultural Health Studies, Große Scharrnstraße 59, 15230 Frankfurt (Oder), Germany.

Published: January 2012

AI Article Synopsis

  • There is growing evidence that high dietary intake of iron (Fe) and copper (Cu) may increase the risk of Alzheimer's disease (AD), prompting a thorough review of existing research.
  • The review included various studies, such as meta-analyses, controlled trials, and case-control studies, but found no clear evidence that altering Fe and Cu levels had a positive impact on cognitive function in AD patients.
  • The findings suggest that older adults, especially those not at risk for anemia, should limit high intakes of Fe and Cu, particularly when combined with saturated fatty acids (SFA), while more research is needed to clarify the impact of these dietary factors on AD risk.

Article Abstract

Fe and Cu could represent dietary risk factors for Alzheimer's disease (AD), which has become a global health concern. To establish the relationship between diets high in Cu and Fe and cognitive decline or AD, we have conducted a systematic review of the literature (up to January 2011). We identified two meta-analyses, two systematic reviews, eleven placebo-controlled trials, five observational studies, forty-five case-control studies, thirty autopsy and five uncontrolled studies, and one case report. There were eleven interventional trials that tried to either supplement or deplete Fe and Cu, but none of them provided clear evidence of a beneficial effect on cognitive performance in patients with AD. The prospective studies revealed an association between a diet simultaneously high in SFA and Cu and cognitive decline. Case-control and autopsy studies showed elevated Fe levels in the brains of AD patients, whereas the evidence was less consistent for Cu. In most of the studies, Cu concentrations were unchanged in the cerebrospinal fluid and the brain but increased in the serum. In conclusion, the existing data suggest that diets excessive in Fe or Cu, together with a high intake of SFA, should be avoided in the elderly who are not at risk of anaemia. Basic studies and, building on this, clinical investigations are needed to further elucidate in which dietary patterns and in which patient groups an Fe- and Cu-rich diet might foster the risk of developing AD.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S000711451100376XDOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
systematic review
8
cognitive decline
8
studies
7
copper iron
4
iron alzheimer's
4
disease systematic
4
review dietary
4
dietary implications
4
implications represent
4

Similar Publications

Alzheimer's disease and antibody-mediated immune responses to infectious diseases agents: a mendelian randomization study.

Hereditas

January 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China.

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, with antibody-mediated immune responses to infectious diseases agents potentially playing a decisive role in its pathophysiological process. However, the causal relationship between antibodies and AD remains unclear.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted to investigate the causal link between antibody-mediated immune responses to infectious diseases agents and the risk of AD.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!