Flooding is a serious problem for soybeans because it reduces growth and grain yield. Proteomic and metabolomic techniques were used to examine whether mitochondrial function is altered in soybeans by flooding stress. Mitochondrial fractions were purified from the roots and hypocotyls of 4-day-old soybean seedlings that had been flooded for 2 days. Mitochondrial matrix and membrane proteins were separated by two-dimensional polyacrylamide gel electrophoresis and blue-native polyacrylamide gel electrophoresis, respectively. Differentially expressed proteins and metabolites were identified using mass spectrometry. Proteins and metabolites related to the tricarboxylic acid cycle and γ-amino butyrate shunt were up-regulated by flooding stress, while inner membrane carrier proteins and proteins related to complexes III, IV, and V of the electron transport chains were down-regulated. The amounts of NADH and NAD were increased; however, ATP was significantly decreased by flooding stress. These results suggest that flooding directly impairs electron transport chains, although NADH production increases in the mitochondria through the tricarboxylic acid cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr2001918DOI Listing

Publication Analysis

Top Keywords

flooding stress
16
roots hypocotyls
8
polyacrylamide gel
8
gel electrophoresis
8
proteins metabolites
8
tricarboxylic acid
8
acid cycle
8
electron transport
8
transport chains
8
flooding
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!