Entropy-driven thermal isomerization of spiropyran in viscous media.

J Phys Chem A

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.

Published: August 2011

Effects of solvent viscosity on the thermal isomerization properties of a spiropyran derivative have been studied in glycerol, ethylene glycol, 1,4-butanediol, and ionic liquid solutions. Thermal isomerization of the colorless spirocyclic (SP) form to the colored merocyanine (MC) form is enhanced with an increase in the concentrations of viscous solvents in solution. Equilibrium absorption analysis revealed that the enhanced SP → MC isomerization in viscous media is due to the strong solvent-solvent interaction, which suppresses the ordering of solvent molecules around the MC form. This results in a positive entropy change for isomerization and, hence, promotes entropy-driven isomerization. Kinetic absorption analysis revealed that the solvent viscosity scarcely affects the thermal activation process for isomerization, where the activation enthalpy and entropy parameters are solely affected by the solvent polarity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp201137dDOI Listing

Publication Analysis

Top Keywords

thermal isomerization
12
viscous media
8
solvent viscosity
8
absorption analysis
8
analysis revealed
8
isomerization
7
entropy-driven thermal
4
isomerization spiropyran
4
spiropyran viscous
4
media effects
4

Similar Publications

Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.

View Article and Find Full Text PDF

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Visible-Light-Driven Fluorescence Turn-on Photoswitches With Near Quantitative Photocyclization Yield.

Adv Sci (Weinh)

January 2025

School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.

Photoswitchable fluorescent materials have gained significant attention for their potential in advanced information encryption and anti-counterfeiting applications. However, the common use of UV light to trigger the isomerization processes leads to photobleaching and poor fatigue resistance. Visible-light-driven fluorescent photoswitches are highly desirable, but achieving high cyclization yield remains challenging.

View Article and Find Full Text PDF

Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.

View Article and Find Full Text PDF

The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro-nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!