A new series of 1H-imidazol-1-yl substituted 8-phenylxanthine analogs has been synthesized to study the effects of the imidazole group on the binding affinity of compounds for adenosine receptors. Competition binding studies of these compounds were carried out in vitro with human cloned receptors using [(3) H]DPCPX and [(3) H]ZM 241385 as radioligands at A(1) and A(2A) adenosine receptors, respectively. The effect of the substitution pattern of the (imidazolyl)alkoxy group on various positions of the phenyl ring at C(8) was also studied. The xanthine derivatives displayed varying degrees of affinity and selectivity towards A(1) and A(2A) receptor subtypes despite a common but variedly substituted Ar-C(8).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201000141 | DOI Listing |
Int J Pharm
January 2025
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain. Electronic address:
Heme oxygenase-1 (HO-1) has been identified as a potential new target in anticancer therapy, being overexpressed in different tumors and crucial for cell proliferation. Advances in the development of specific HO-1 inhibitors should support the understanding of controlling HO-1 activity as antitumoral strategies, opening the path for future therapeutic applications. In the present study, small series of new HO-1 inhibitors were synthesized by joining a butylimidazolic pharmacophore together with a hydrophobic moiety spaced by a 2-oxybenzamide central linker.
View Article and Find Full Text PDFDrug Dev Res
November 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
Mortalities due to mycoses have dramatically increased with the emergence of drug-resistant strains and growing immune-compromised populations globally. Azole antifungals have been the first choice against fungal infections of a wide spectrum and several azole derivatives with ester function were reported for their potentially promising and favorable activity against Candida spp. In this study, we designed and synthesized a series of 1-(aryl)-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1-yl)ethyl esters, and tested them against seven reference Candida strains using EUCAST reference microdilution method.
View Article and Find Full Text PDFBioorg Med Chem
November 2024
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA. Electronic address:
CYP5122A1, an enzyme involved in sterol biosynthesis in Leishmania, was recently characterized as a sterol C4-methyl oxidase. Screening of a library of compounds against CYP5122A1 and CYP51 from Leishmania resulted in the identification of two structurally related classes of inhibitors of these enzymes. Analogs of screening hit N-(3,5-dimethylphenyl)-4-(pyridin-4-ylmethyl)piperazine-1-carboxamide (4a) were generally strong inhibitors of CYP51 but were less potent against CYP5122A1 and typically displayed weak inhibition of L.
View Article and Find Full Text PDFChemSusChem
December 2024
Institut de Chimie Moléculaire de l'Université de Bourgogne UMR6302, CNRS, Univ. Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France.
Electrochemical oxidation of Zn(II) 2,7,12,17-tetra-tert-butylporphyrin in the presence of a series of azole derivatives (1-methylimidazole, 1-vinyl-1H-imidazole, 2-(1H-imidazol-1-yl)pyridine, 1-methylbenzimidazole, 1-methyl-1H-1,2,4-triazole, and benzothiazole) affords the corresponding meso-substituted azolium-porphyrins in very mild conditions and good yields. It was found that these nucleophiles were strongly ligated to the zinc(II) azolium-porphyrin complexes. Thus a demetalation/remetalation procedure was performed to recover the non-azole-coordinated zinc(II) complexes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
February 2024
Interdisciplinary Excellence Center, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary.
Starting from isosteviol, a series of diterpenoid 1,3-aminoalcohol derivatives were prepared via stereoselective transformations. The acid-catalysed hydrolysis and rearrangement of natural stevioside produced isosteviol, which was transformed into the key intermediate methyl ester. In the next step, an 1,3-aminoalcohol library was prepared by the reductive amination of the intermediate 3-hydroxyaldehyde obtained from isosteviol in a two-step synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!