In vitro axillary buds of two apple cultivars, Pinova and Jonagold, were successfully cryopreserved by droplet-vitrification. In vitro axillary buds of cv. Pinova were subjected to PVS2 for 15, 30, 45, 60, 80 or 100 min, while Jonagold buds were treated with PVS2 for 15, 30, 45 or 60 min. In addition, the effect of age of in vitro mother-plants on recovery after cryopreservation was evaluated. Recovery was performed on medium with various combinations of BA, IBA and GA3. Regrowth percentages for cv. Pinova increased in line with increasing PVS2 exposure durations, from 15 to 60 min. Cv. Jonagold showed a similar trend with an increase in regrowth from 30 to 60 min PVS2 exposure. Improved regrowth was observed when axillary buds were excised from aged mother-plants in comparison to those excised from plantlets that were regularly subcultured. The highest shoot regrowth was obtained when applying a 60 min PVS2 treatment to axillary buds excised from non-preconditioned 4-month old in vitro shoots and performing regrowth on recovery medium containing 4.50 microM BA and 0.50 microM IBA. This optimal protocol was also successfully applied to apple rootstocks M26 and Jork 9.
Download full-text PDF |
Source |
---|
Plant Sci
January 2025
Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China. Electronic address:
Amino acids are crucial nutrients for growth in crops. In this study, we found an amino acid transporter-like 13 (OsATL13), that coordinately determined rice yield and quality. OsATL13 was primarily expressed in the root and panicle, its protein was localized on plasma membrane, and it principally transported phenylalanine and methionine.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFPhysiol Plant
January 2025
International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.
View Article and Find Full Text PDFJ Proteomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China. Electronic address:
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
Background: P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!