Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of conventional end-point assaying technologies. We present the first human kinome screen with a real-time cell analysis system (RTCA) to capture dynamic RNAi phenotypes, employing time-resolved monitoring of cell proliferation via electrical impedance. RTCA allowed us to investigate the dynamics of phenotypes of cell proliferation instead of using conventional end-point analysis. By introducing data transformation with first-order derivative, i.e. the cell-index growth rate, we demonstrate this system suitable for high-throughput screenings (HTS). The screen validated previously identified inhibitor genes and, additionally, identified activators of cell proliferation. With the information of time kinetics available, we could establish a network of mitotic-event related genes to be among the first displaying inhibiting effects after RNAi knockdown. The time-resolved screen captured kinetics of cell proliferation caused by RNAi targeting human kinome, serving as a resource for researchers. Our work establishes RTCA technology as a novel robust tool with biological and pharmacological relevance amenable for high-throughput screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135613PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022176PLOS

Publication Analysis

Top Keywords

cell proliferation
24
human kinome
12
regulators cell
8
end-point analysis
8
conventional end-point
8
cell
7
proliferation
6
time-resolved human
4
rnai
4
kinome rnai
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!