Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134287PMC
http://dx.doi.org/10.1016/j.jpowsour.2010.10.054DOI Listing

Publication Analysis

Top Keywords

silver vanadium
8
vanadium phosphorous
8
phosphorous oxide
8
oxide ag2vo2po4
8
chimie douce
8
douce preparation
8
svpo prepared
8
prepared hydrothermal
8
hydrothermal method
8
svpo
6

Similar Publications

Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Deciphering the Evolution of Current Distribution in Hybrid Silver Vanadium Oxide / Carbon Monofluoride Cathodes within Lithium Primary Batteries.

Chemphyschem

January 2025

Institute of Energy: Sustainability, Environment, and Equity (I:SEE), Stony Brook University, Stony Brook, New York, 11794, United States of America.

For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon to create a composite electrode. An alternative approach is the electrochemically induced formation of conductive reaction products where the electrochemically generated materials are in intimate contact with the active material contributing to effective connection of each active particle.

View Article and Find Full Text PDF

Only limited data on concentrations of trace elements in the blood of avian species have been published. This information can play an important role in the conservation of endangered species and their protection from environmental pollutants and can also be clinically relevant in managed individuals. Some elements are essential for the health of the animals in human care, but little is known about expected concentrations for some of these elements.

View Article and Find Full Text PDF

Exploring cost-effective alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR) in fuel cells is crucial for their large-scale deployment in green energy applications. Silver vanadate (AgVO) is a well-studied material for photocatalytic applications. Here, we investigate the electrocatalytic ORR activity of the thermodynamically stable β phase of AgVO through computational modeling based on DFT.

View Article and Find Full Text PDF

Technological change has affected human health dating back to at least the Neolithic agricultural revolution. Growing evidence indicates widespread environmental pollution began with metallurgical practices and continues today. Environmental exposures to trace elements released from these practices have the potential to alter human body composition, such as bone mineral chemistry, especially for elements that are not homeostatically regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!