Limnologists have regarded temporal coherence (synchrony) as a powerful tool for identifying the relative importance of local-scale regulators and regional climatic drivers on lake ecosystems. Limnological studies on Asian reservoirs have emphasized that climate and hydrology under the influences of monsoon are dominant factors regulating seasonal patterns of lake trophic status; yet, little is known of synchrony or asynchrony of trophic status in the single reservoir ecosystem. Based on monthly monitoring data of chlorophyll a, transparency, nutrients, and nonvolatile suspended solids (NVSS) during 1-year period, the present study evaluated temporal coherence to test whether local-scale regulators disturb the seasonal dynamics of trophic state indices (TSI) in a giant dendritic reservoir, China (Three Gorges Reservoir, TGR). Reservoir-wide coherences for TSI(CHL), TSI(SD), and TSI(TP) showed dramatic variations over spatial scale, indicating temporal asynchrony of trophic status. Following the concept of TSI differences, algal productivity in the mainstream of TGR and Xiangxi Bay except the upstream of the bay were always limited by nonalgal turbidity (TSI(CHL)-TSI(SD) <0) rather than nitrogen and phosphorus (TSI(CHL)-TSI(TN) <0 and TSI(CHL)-TSI(TP) <0). The coherence analysis for TSI differences showed that local processes of Xiangxi Bay were the main responsible for local asynchrony of nonalgal turbidity limitation levels. Regression analysis further proved that local temporal asynchrony for TSI(SD) and nonalgal turbidity limitation levels were regulated by local dynamics of NVSS, rather than geographical distance. The implications of the present study are to emphasize that the results of trophic status obtained from a single environment (reservoir mainstream) cannot be extrapolated to other environments (tributary bay) in a way that would allow its use as a sentinel site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107943PMC
http://dx.doi.org/10.1007/s11270-010-0705-5DOI Listing

Publication Analysis

Top Keywords

trophic status
16
asynchrony trophic
12
local-scale regulators
12
temporal asynchrony
8
giant dendritic
8
dendritic reservoir
8
temporal coherence
8
trophic
5
temporal
4
status
4

Similar Publications

The management and creation of Marine Protected Areas (MPAs) is currently under great focus, with international organisations aiming to protect 30% of our oceans by 2030. The success of MPAs depends on a nuanced understanding of local ecological dynamics and threats, which can significantly influence ecosystem balance. Herbivory can be a stressor for foundation species, namely kelp forests, contributing to their decline in several regions of the globe.

View Article and Find Full Text PDF

Reusing treated wastewater (TWW) for crop irrigation has shown to provide environmental and economic benefits as well as drawbacks. This study was conducted using soils collected from a wastewater reuse facility in Tallahassee, FL, mainly to elucidate the long-term impact(s) of TWW irrigation on soil microbiome and nutrient status. Approximately 890 ha of land have been spray-irrigated with TWW since the 1980's to grow fodder crops.

View Article and Find Full Text PDF

Terrestrial nematodes are important soil microorganisms that modulate biological processes in soil ecosystems. Thus, these microorganisms have strong potential as soil health bioindicators. This study aimed to investigate their distribution patterns in Moroccan olive agroecosystems and to evaluate their structural and functional dynamics shaping soil disturbance status.

View Article and Find Full Text PDF

Eutrophication remains a persistent water quality issue throughout much of the United States, leading to changes to ecosystem health in valuable coastal habitats. Oysters help to buffer against eutrophication by removing nitrogen from the water column by feeding on phytoplankton and other seston, a process referred to as "bioextraction". Recent legislation in Texas has allowed oysters to be grown off-bottom (suspended in cages).

View Article and Find Full Text PDF

The composition and source information of the aquatic dissolved organic matter (DOM) in the Daihai Lake, a typical saline lake at the ecologically fragile agro-pastoral area, were explored with three-dimensional excitation and emission matrix fluorescence (3DEEM), parallel factor analysis (PARAFAC), and fluorescence peaks (B, T, A, M, C, D, and N). Further, the relationship between aquatic DOM fluorescence characteristics and environmental factors were analyzed using correlation analysis in the Daihai Lake. The results showed that the water of Daihai was weakly alkaline, with high nutrient salt concentration and serious organic pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!