Objective: Computed tomography (CT) perfusion studies can provide valuable information regarding tumor vascularization. We report on a study assessing CT perfusion characteristics in the normal pancreas and in patients with pancreatic adenocarcinoma.
Methods: Twenty healthy subjects and 20 patients with histologically confirmed pancreatic adenocarcinoma were included in the study after written informed consent and approval by our institutional review board. All subjects underwent perfusion CT imaging of the pancreas using 128-slice dual-source CT. The scanning sequence included 18 scans. Parametric maps of blood volume (BV), blood flow (BF), and permeability surface area product (PS) were generated and compared with density measurements.
Results: In normal pancreas, no significant difference in perfusion values was observed between head, body, and tail of the pancreas. Mean organ values were 76.76 (SD, 15.6) mL/100 g/min, 15.80 (SD, 2.40) mL/100 g, and 27.74 (SD, 16.8) mL/100 g/min for BF, BV, and PS, respectively. Compared with the normal pancreas, a 60% reduction in BF and BV was observed in the tumor tissue. Perfusion values gradually increased toward the tumor rim. Necrotic tumor areas were identified in 25% of patients. No significant differences were observed when comparing normal pancreas and healthy pancreatic tissue in adenocarcinoma patients.
Conclusions: The feasibility of whole-tumor perfusion imaging using 128-slice CT was demonstrated in patients with pancreatic adenocarcinoma. Perfusion CT provides additional information compared with image assessment based on density measurements (Hounsfield units) and allows noninvasive assessment of vascularization in the tumor tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RCT.0b013e318223f0c5 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China.
Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.
View Article and Find Full Text PDFExpert Opin Pharmacother
January 2025
The Association of Diabetes Investigators, Newport Coast, CA, USA.
Introduction: Type 1 diabetes is a unique autoimmune attack on the β cell of the pancreatic islet resulting in progressive destruction of these cells and as a result the ability of the body to maintain insulin production. The consequences of insulin deficiency are very severe, and the disease was fatal prior to the ability to extract insulin from animal pancreas in 1921. We review progress in the treatment of childhood type 1 diabetes over the past 100 years.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA.
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
Context: Type 1 diabetes (T1D) is characterized by the presence of autoantibodies on a genetic background largely determined by HLA class II haplotypes. Stage 1 T1D is characterized by the presence of multiple autoantibodies and normoglycemia.
Objective: To investigate the prevalence of high-risk HLA-DQB1 haplotypes and the extent of islet autoimmunity in pancreatic tissues from non-diabetic organ donors with autoantibodies.
Front Cell Dev Biol
January 2025
Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!