Development of t(50) and its application to evaluate very-high-gravity ethanol fermentation.

J Biosci Bioeng

Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7H 5A9.

Published: October 2011

A three-parameter logistic growth model was modified to monitor the glucose uptake profile of yeast during very-high-gravity (VHG) ethanol fermentation. The modified model was used to define t(50) as a quantifier to differentiate among various fermentation conditions. There are two types of t(50); t(50)(g) is the time required to convert 50% of the initial glucose, and t(50)(e) is the time required to produce half of the final ethanol. A 2(4) factorial experimental design was implemented to illustrate the applicability of using t(50) to isolate active ingredients in VHG growth media. The analytical results obtained from the experimental design and from a modified model were compared, which demonstrated that t(50) could serve the proposed objectives. A shorter t(50) implies a faster fermentation. A tailing of the ethanol profile after t(50)(e) indicates that there is an inhibitory effect imposed on yeast, i.e., the stronger the tailing in the ethanol profile, the stronger the inhibitory effect. When t(50) is equal to or near to the halftime of the total course of the fermentation, a bell-shaped curve was seen for the glucose uptake rate or for the ethanol production rate, indicating that the inhibitory effect exerted on yeast was evenly distributed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2011.06.014DOI Listing

Publication Analysis

Top Keywords

ethanol fermentation
8
glucose uptake
8
modified model
8
time required
8
experimental design
8
tailing ethanol
8
ethanol profile
8
ethanol
6
t50
6
fermentation
5

Similar Publications

With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.

View Article and Find Full Text PDF

Background: The storage process of Nongxiangxing daqu is closely related to the quality of the daqu. The role of storage in daqu manufacture remains unclear, and most actual production relies on previous production experience.

Results: With the extension of daqu storage over a period of time, saccharifying activity, liquefying activity, fermenting activity, and esterifying activity reached a peak when stored for 3 to 4 months.

View Article and Find Full Text PDF

Cell-free enzyme systems have emerged as a promising approach for producing various biometabolites, offering several advantages over traditional whole-cell systems. This study presents an approach to producing nicotinamide mononucleotide (NMN) by combining a Saccharomyces cerevisiae cell-free enzyme with a recombinant Escherichia coli cell-free enzyme. The system leverages the ATP generated by yeast during ethanol fermentation to produce NMN in the presence of nicotinamide (NAM) as a substrate.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!