Introduction: Dentin regeneration could be an ideal treatment option to restore tissue function. This study was conducted to evaluate the ability of dental pulp stem cells (DPSCs) and dentin matrix protein 1 (DMP1) impregnated within a collagen scaffold to regenerate dentin.

Methods: Simulated perforations were created in 18 dentin wafers made from freshly extracted human molars. Six groups were established. They were (1) empty wafers, (2) mineral trioxide aggregate, (3) collagen scaffold, (4) scaffold with DMP1, (5) scaffold with DPSCs, and (6) scaffold with DPSCs and DMP1. One sample was placed subcutaneously in each mouse with three mice in each group. After 12 weeks, the samples were subjected to radiographic, histological, and immunohistochemical evaluations.

Results: DPSCs impregnated within a collagen scaffold differentiated into odontoblast-like cells forming a highly cellular, vascular, and mineralized matrix in the presence of DMP1.

Conclusions: A triad consisting of DPSCs, DMP1, and a collagen scaffold promotes dentin regeneration in a simulated perforation repair model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139150PMC
http://dx.doi.org/10.1016/j.joen.2011.05.019DOI Listing

Publication Analysis

Top Keywords

collagen scaffold
16
perforation repair
8
dental pulp
8
pulp stem
8
stem cells
8
dentin matrix
8
matrix protein
8
dentin regeneration
8
impregnated collagen
8
scaffold dpscs
8

Similar Publications

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.

View Article and Find Full Text PDF

Objective: Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms.

View Article and Find Full Text PDF

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.

Tissue Eng Part A

January 2025

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!