Notch ligand ubiquitylation: what is it good for?

Dev Cell

Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA.

Published: July 2011

In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156059PMC
http://dx.doi.org/10.1016/j.devcel.2011.06.006DOI Listing

Publication Analysis

Top Keywords

notch ligand
8
ligand ubiquitylation
8
notch signaling
8
notch
4
ubiquitylation good
4
good for?
4
for? volume
4
volume developmental
4
developmental cell
4
cell reported
4

Similar Publications

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty.

J Endocr Soc

January 2025

Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.

Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.

View Article and Find Full Text PDF

In the developing mouse ventral spinal cord, HES5, a transcription factor downstream of Notch signalling, is expressed as evenly spaced clusters of high HES5-expressing neural progenitor cells along the dorsoventral axis. While Notch signalling requires direct membrane contact for its activation, we have previously shown mathematically that contact needs to extend beyond neighbouring cells for the HES5 pattern to emerge. However, the presence of cellular structures that could enable such long-distance signalling was unclear.

View Article and Find Full Text PDF

Danlian-Tongmai formula improves diabetic vascular calcification by regulating CCN3/NOTCH signal axis to inhibit inflammatory reaction.

Front Pharmacol

January 2025

National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Background: Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear.

View Article and Find Full Text PDF

Synthetic Notch (SynNotch) receptors function like natural Notch proteins and can be used to install customized sense-and-respond capabilities into mammalian cells. Here, we introduce an adaptor-based strategy for regulating SynNotch activity via fluorescein isomers and analogs. Using an optimized fluorescein-binding SynNotch receptor, we describe ways to chemically control SynNotch signaling, including an approach based on a bio-orthogonal chemical ligation and a spatially controllable strategy via the photo-patterned uncaging of an o-nitrobenzyl-caged fluorescein conjugate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!