Completion of genome duplication during the S-phase of the cell cycle is crucial for the maintenance of genomic integrity. In eukaryotes, chromosomal DNA replication is accomplished by the activity of multiple origins of DNA replication scattered across the genome. Origin specification, selection and activity as well as the availability of replication factors and the regulation of DNA replication licensing, have unique and common features among eukaryotes. Although the initial studies on the semiconservative nature of chromosome duplication were carried out in the mid 1950s in Vicia faba, since then plant DNA replication studies have been scarce. However, they have received an unprecedented drive in the last decade after the completion of sequencing the Arabidopsis thaliana genome, and more recently of other plant genomes. In particular, the past year has witnessed major advances with the use of genomic approaches to study chromosomal replication timing, DNA replication origins and licensing control mechanisms. In this minireview article we discuss these recent discoveries in plants in the context of what is known at the genomic level in other eukaryotes. These studies constitute the basis for addressing in the future key questions about replication origin specification and function that will be of relevance not only for plants but also for the rest of multicellular organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2011.04.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!