Bipartite syntaxin 1A interactions mediate CaV2.2 calcium channel regulation.

Biochem Biophys Res Commun

Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, Canada T2N 4N1.

Published: August 2011

Functional interactions between syntaxin 1A and Ca(V)2 calcium channels are critical for fast neurotransmitter release in the mammalian brain, and coexpression of syntaxin 1A with these channels not only regulates channel availability, but also promotes G-protein inhibition. Both the syntaxin 1A C-terminal H3 domain, and N-terminal Ha domain have been shown to interact with the Ca(V)2.2 channel synprint region, suggesting a bipartite model of functional interaction, however the molecular determinants of this interaction have not been closely investigated. We used in vitro binding assays to assess interactions of syntaxin 1A truncation mutants with Ca(V)2.2 synprint and Ca(V)2.3 II-III linker regions. We identified two distinct interactions between the Ca(V)2.2 synprint region and syntaxin 1A: the first between C-terminal H3c domain of syntaxin 1A and residues 822-872 of Ca(V)2.2; and the second between the N-terminal 10 residues of the syntaxin 1A Ha region and residues 718-771 of Ca(V)2.2. The N-terminal syntaxin 1A fragment also interacted with the Ca(V)2.3 II-III linker. We then performed whole cell patch clamp recordings to test the effects of a putative interacting syntaxin 1A N-terminus peptide with Ca(V)2.2 and Ca(V)2.3 channels in a recombinant expression system. A YFP-tagged peptide corresponding to the N-terminal 10 residues of the syntaxin 1A Ha domain was sufficient to allosterically inhibit both Ca(V)2.2 and Ca(V)2.3 channel function but had no effect on G-protein mediated inhibition. Our results support a model of bipartite functional interactions between syntaxin 1A and Ca(V)2.2 channels and add accuracy to the two putative interacting domains, consistent with previous studies. Furthermore, we highlight the syntaxin 1A N-terminus as the minimal determinant for functional regulation of Ca(V)2.2 and Ca(V)2.3 channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.06.185DOI Listing

Publication Analysis

Top Keywords

syntaxin
12
interactions syntaxin
12
cav22 cav23
12
cav22
10
functional interactions
8
syntaxin c-terminal
8
synprint region
8
cav22 synprint
8
cav23 ii-iii
8
ii-iii linker
8

Similar Publications

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.

View Article and Find Full Text PDF

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

Assays of Platelet SNARE-actin Interactions.

Methods Mol Biol

January 2025

Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.

The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.

View Article and Find Full Text PDF

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!