TiO(2) coated surfaces are able to generate highly reactive oxidizing species under mild UV-A light exposure in the presence of water and oxygen. We have demonstrated that these radicals are sufficient to eliminate different pathogenic bacteria, by breaking their cell walls. The photocatalytic activity of surfaces coated with titanium dioxide offers therefore an alternative possibility of disinfection. However, restriction of bacterial growth does not protect surfaces from bacterial derived contaminations, such as endotoxins. Lipopolysaccharides (LPS) and Ribonuclease A (RNAse A) represent the two most abundant contaminations, causing severe problems in biomedical and immunological research as well as in the pharmaceutical industry. Due to their high stability, complete removal of these contaminants is technically challenging. Using irradiated TiO(2) coated glass plates, RNAse A and LPS containing contaminations could be completely inactivated. By establishing highly sensitive immuno-based assays, destruction of the contaminants was quantified and shown to be independent of the initial concentrations, following a zero-order reaction. Exposure for 96 h resulted in a reduction of 11 ng of LPS and 7 units of RNase A cm(-2) surface. These amounts are comparable to contamination levels found under standard working conditions. Titanium dioxide coatings provide therefore a powerful tool for auto-disinfection and self-cleaning of surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2011.06.048DOI Listing

Publication Analysis

Top Keywords

tio2 coated
8
titanium dioxide
8
surfaces
5
inactivation lps
4
rnase
4
lps rnase
4
rnase photocatalytically
4
photocatalytically active
4
active surfaces
4
surfaces tio2
4

Similar Publications

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

Functionally Graded Oxide Scale on (Hf,Zr,Ti)B Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving.

Adv Sci (Weinh)

January 2025

Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Fe diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications.

J Colloid Interface Sci

January 2025

Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:

Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.

View Article and Find Full Text PDF

Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!