Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C. ensiformis and C. cajan were found to be 215.10% and 255.92%, respectively. The methodology adopted has deviation of 2.56% and 3.01% with respect to experimental values in case of C. ensiformis and C. cajan, respectively. Nano-urease from C. cajan has broad physico-chemical parameters with pH optimum from 7.1 to 7.3 and temperature optimum from 50 to 70°C. Nano-urease from C. ensiformis has sharp pH and temperature optima at 7.3 and 70°C, respectively. Fourier transform infra-red spectroscopy has revealed involvement of groups viz. amino, glycosyl moiety, etc. in urease immobilization onto gold nano-particles. Transmission and scanning electron micrographs revealed that arrangement of urease onto gold nano-particles from C. ensiformis was uniform while it was localized in case of C. cajan. Nano-urease from C. ensiformis has higher specificity and catalysis toward urea as compared to nano-urease from C. cajan. Nano-ureases from both sources are equally stable for 6 months under dried conditions and can be used for 10 washes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2011.06.027DOI Listing

Publication Analysis

Top Keywords

nano-urease ensiformis
12
response surface
8
canavalia ensiformis
8
ensiformis cajanus
8
cajanus cajan
8
urease immobilization
8
ensiformis cajan
8
cajan nano-urease
8
nano-urease cajan
8
gold nano-particles
8

Similar Publications

Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!