Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films.

J Biomater Sci Polym Ed

Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan 320, Republic of China.

Published: March 2012

The influence of the topographic morphology of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films on human mesenchymal stem cells (hMSCs) was investigated in this study. PHBHHx films with various surface characteristics were prepared by compression-molding, solvent-casting and electrospinning. The adhesion, proliferation and differentiation behaviors of hMSCs were significantly modulated by the surface characteristics of these films. HMSCs could aggregate and form cellular clusters on the cast PHBHHx films, and the time to form cellular aggregates increased as the surface roughness increased. The aggregated hMSCs on the cast films kept their original surface markers and presented much higher viability during the regular culture and lower differentiation ability upon osteogenic induction than the spread cells on the compression-molded films and TCPS. HMSCs spread well and showed a specific orientation on the surface of the random electrospun fibrous films, they were not able to migrate into the interior of electrospun fibrous films, and they revealed the highest viability during the regular culture but a lower differentiation activity upon osteogenic induction. The electrospun fibrous PHBHHx films could serve as a suitable substrate for large quantity culturing of hMSCs when undifferentiated hMSCs are desired.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050610X541386DOI Listing

Publication Analysis

Top Keywords

phbhhx films
20
electrospun fibrous
12
films
10
human mesenchymal
8
mesenchymal stem
8
stem cells
8
hmscs
8
cells hmscs
8
poly3-hydroxybutyrate-co-3-hydroxyhexanoate phbhhx
8
surface characteristics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!