Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja200122f | DOI Listing |
J Mater Chem A Mater
December 2024
Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
The catalytic and plasmonic properties of bimetallic gold-palladium (Au-Pd) nanoparticles (NPs) critically depend on the distribution of the Au and Pd atoms inside the nanoparticle bulk and at the surface. Under operating conditions, the atomic distribution is highly dynamic. Analyzing gas induced redistribution kinetics at operating temperatures is therefore key in designing and understanding the behavior of Au-Pd nanoparticles for applications in thermal and light-driven catalysis, but requires advanced characterization strategies.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
Simultaneously controlling both stoichiometry and atom arrangement during the synthesis of multimetallic nanoparticles is often challenging, especially when the desired metal precursors exhibit large differences in their intrinsic reduction kinetics. In such cases, traditional synthetic methods often lead to the formation of exclusively phase-segregated structures. In this study, we demonstrate that the relative reduction kinetics of the metal precursors can be manipulated independently of their intrinsic differences in reduction rates by modulating the instantaneous concentrations of the metal cation precursors.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia. Electronic address:
This study presents the development and optimization of Ce-MOF-808 nanocrystals supported by metallic and bimetallic nanoparticles (Au, Ag, and Pd) for the efficient reduction of nitrophenol. Using a sol-immobilization method, we synthesized a series of catalysts, including Au/Ce-MOF-808, Au-Ag/Ce-MOF-808, and Au-Pd/Ce-MOF-808, and evaluated their catalytic efficacy of 4-nitrophenol (4-NP) reduction using NaBH₄ under mild conditions. Initially, effects of time (1-18 min), and catalyst dose (1-6 mg) on the reduction of nitrophenol were investigated through the one-factor-at-a-time experiment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Materials Science and Engineering, University of California - Davis, Davis, California 95616, United States.
Metal alloy nanostructures represent a promising platform for next-generation nanophotonic devices, surpassing the limitations of pure metals by offering additional "buttons" for tailoring their optical properties by compositional variations. While alloyed nanoparticles hold great potential, their scalability and underexplored optical behavior still limit their application. Here, we establish a systematic approach to quantifying the unique optical behavior of the AgAuPd ternary system while providing a direct comparison with its pure constituent metals.
View Article and Find Full Text PDFSci Adv
September 2024
Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA.
Engineering strain critically affects the properties of materials and has extensive applications in semiconductors and quantum systems. However, the deployment of strain-engineered nanocatalysts faces challenges, in particular in maintaining highly strained nanocrystals under reaction conditions. Here, we introduce a morphology-dependent effect that stabilizes surface strain even under harsh reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!