A number of protein toxins bind at the surface of mammalian cells and after endocytosis traffic to the endoplasmic reticulum, where the toxic A chains are liberated from the holotoxin. The free A chains are then dislocated, or retrotranslocated, across the ER membrane into the cytosol. Here, in contrast to ER substrates destined for proteasomal destruction, they undergo folding to a catalytic conformation and subsequently inactivate their cytosolic targets. These toxins therefore provide toxic probes for testing the molecular requirements for retrograde trafficking, the ER processes that prepare the toxic A chains for transmembrane transport, the dislocation step itself and for the post-dislocation folding that results in catalytic activity. We describe here the dislocation of ricin A chain and Shiga toxin A chain, but also consider cholera toxin which bears a superficial structural resemblance to Shiga toxin. Recent studies not only describe how these proteins breach the ER membrane, but also reveal aspects of a fundamental cell biological process, that of ER-cytosol dislocation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/82_2011_154DOI Listing

Publication Analysis

Top Keywords

shiga toxin
12
endoplasmic reticulum
8
toxic chains
8
folding catalytic
8
ricin shiga
4
toxin
4
toxin reach
4
reach cytosol
4
cytosol target
4
target cells
4

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Ruminant-dense environments increase risk of reported Shiga toxin-producing infections independently of ruminant contact.

Appl Environ Microbiol

January 2025

Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.

Cattle and other domestic ruminants are the primary reservoirs of O157 and non-O157 Shiga toxin-producing (STEC). Living in areas with high ruminant density has been associated with excess risk of infection, which could be due to both direct ruminant contact and residual environmental risk, but the role of each is unclear. We investigated whether there is any meaningful risk to individuals living in ruminant-dense areas if they do not have direct contact with ruminants.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!