We tested the hypothesis that exercise ameliorates contractile dysfunction by interfering with homocysteine - β2-adrenergic receptor (AR) interactions, inducing β2-adrenergic response and Gs (stimulatory G adenylyl cyclase dependent protein kinase), and lowering homocysteine level in diabetes. The effect of homocysteine on β2-AR was determined by (a) scoring the β2-AR in the cardiomyocytes treated with high dose of homocysteine using flow cytometry, and (b) co-localizing homocysteine with Gs (an inducer of β2-AR) in the cardiomyocytes obtained from C57BL/ 6J (WT) and db/ db mice using confocal microscopy. The effect of exercise on the protein-protein interactions of homocysteine and β2-AR in diabetes was evaluated by co-immunoprecipitation in the four groups of db/db mice: (1) sedentary, (2) treated with salbutamol (a β2-AR agonist), (3) swimming exercise, and (4) swimming + salbutamol treatment. The effect of exercise on β2-AR was determined by RT-PCR and Western blotting while cardiac dysfunction was assessed by echocardiography, and contractility and calcium transient of cardiomyocytes from the above four groups. The results revealed that elevated level of homocysteine decreases the number of β2-AR and inhibits Gs in diabetes. However, exercise mitigates the interactions of homocysteine with β2-AR and induces β2-AR. Exercise also ameliorates cardiac dysfunction by enhancing the calcium transient of cardiomyocytes. To our knowledge, this is the first report showing mechanism of homocysteine mediated attenuation of β2-AR response in diabetes and effect of exercise on homocysteine - β2-AR interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134004 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!