Mapping of protein-protein interaction sites in the plant-type [2Fe-2S] ferredoxin.

PLoS One

Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.

Published: October 2011

Knowing the manner of protein-protein interactions is vital for understanding biological events. The plant-type [2Fe-2S] ferredoxin (Fd), a well-known small iron-sulfur protein with low redox potential, partitions electrons to a variety of Fd-dependent enzymes via specific protein-protein interactions. Here we have refined the crystal structure of a recombinant plant-type Fd I from the blue green alga Aphanothece sacrum (AsFd-I) at 1.46 Å resolution on the basis of the synchrotron radiation data. Incorporating the revised amino-acid sequence, our analysis corrects the 3D structure previously reported; we identified the short α-helix (67-71) near the active center, which is conserved in other plant-type [2Fe-2S] Fds. Although the 3D structures of the four molecules in the asymmetric unit are similar to each other, detailed comparison of the four structures revealed the segments whose conformations are variable. Structural comparison between the Fds from different sources showed that the distribution of the variable segments in AsFd-I is highly conserved in other Fds, suggesting the presence of intrinsically flexible regions in the plant-type [2Fe-2S] Fd. A few structures of the complexes with Fd-dependent enzymes clearly demonstrate that the protein-protein interactions are achieved through these variable regions in Fd. The results described here will provide a guide for interpreting the biochemical and mutational studies that aim at the manner of interactions with Fd-dependent enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132287PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021947PLOS

Publication Analysis

Top Keywords

plant-type [2fe-2s]
16
protein-protein interactions
12
fd-dependent enzymes
12
[2fe-2s] ferredoxin
8
plant-type
5
mapping protein-protein
4
protein-protein interaction
4
interaction sites
4
sites plant-type
4
[2fe-2s]
4

Similar Publications

Crops3D: a diverse 3D crop dataset for realistic perception and segmentation toward agricultural applications.

Sci Data

December 2024

National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, P. R. China.

Point cloud analysis is a crucial task in computer vision. Despite significant advances over the past decade, the developments in agricultural domain have faced challenges due to a scarcity of datasets. To facilitate 3D point cloud research in agriculture community, we introduce Crops3D, the diverse real-world dataset derived from authentic agricultural scenarios.

View Article and Find Full Text PDF

An AP2/ERF transcription factor GhERF109 negatively regulates plant growth and development in cotton.

Plant Sci

December 2024

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China. Electronic address:

Cotton is an important source of natural fibers. The AP2/ethylene response factor (ERF) family is one of the largest plant-specific transcription factors (TFs) groups, playing key roles in plant growth and development. However, the role of ERF TFs in cotton's growth and development remains unclear.

View Article and Find Full Text PDF

[Development of DUS testing guidelines of Artemisia argyi].

Zhongguo Zhong Yao Za Zhi

November 2024

College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065, China Hubei Shizhen Laboratory Wuhan 430065, China.

Artemisia argyi is a perennial herbaceous herb of the Artemisia family, with leaves for medical use. However, the germplasm of A. argyi is seriously unclear and mixed during production, and it is urgent to protect new varieties of A.

View Article and Find Full Text PDF

The choice of plant species is crucial, as different plants provide unique biomolecules that influence nanoparticle characteristics. Biomolecules in plant extracts, such as proteins, amino acids, enzymes, polysaccharides, alkaloids, tannins, phenolics, saponins, terpenoids, and vitamins, act as stabilizing and reducing agents. This study explores the synthesis of silver nanoparticles (AgNPs) using leaf extracts from collard greens ( var.

View Article and Find Full Text PDF

In silico structural and mechanistic sights into the N-glycosidase mechanism of Shiga toxin.

Arch Toxicol

December 2024

Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, #408, 4th Floor, Warangal, 506004, India.

Shiga toxin is the leading cause of food poisoning in the world. It is structurally similar to the plant type II ribosome-inactivating proteins (RIPs) and retains N-glycosidase activity. It acts specifically by depurinating the specific adenine A4605 of human 28S rRNA, ultimately inhibiting translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!