(-)-Hydroxycitrate, a potent inhibitor of ATP citrate-lyase, was tested in Hep G2 cells for effects on cholesterol homoeostasis. After 2.5 h and 18 h incubations with (-)-hydroxycitrate at concentrations of 0.5 mM or higher, incorporation of [1,5-14C]citrate into fatty acids and cholesterol was strongly inhibited. This most likely reflects an effective inhibition of ATP citrate-lyase. Cholesterol biosynthesis was decreased to 27% of the control value as measured by incorporations from 3H2O, indicating a decreased flux of carbon units through the cholesterol-synthetic pathway. After 18 h preincubation with 2 mM-(-)-hydroxycitrate, the cellular low-density-lipoprotein (LDL) receptor activity was increased by 50%, as determined by the receptor-mediated association and degradation. Measurements of receptor-mediated binding versus LDL concentration suggests that this increase was due to an increase in the numbers of LDL receptors. Simultaneously, enzyme levels of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase as determined by activity measurements increased 30-fold. Our results suggest that the increases in HMG-CoA reductase and the LDL receptor are initiated by the decreased flux of carbon units in the cholesterol-synthetic pathway, owing to inhibition of ATP citratelyase. A similar induction of HMG-CoA reductase and LDL receptor was also found after preincubations of cells with 0.3 microM-mevinolin, suggesting that the underlying mechanism for this induction is identical for both drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1149674PMC
http://dx.doi.org/10.1042/bj2720181DOI Listing

Publication Analysis

Top Keywords

ldl receptor
12
hmg-coa reductase
12
atp citrate-lyase
8
inhibition atp
8
decreased flux
8
flux carbon
8
carbon units
8
units cholesterol-synthetic
8
cholesterol-synthetic pathway
8
reductase ldl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!